ﻻ يوجد ملخص باللغة العربية
Objectives.--To estimate the basic reproduction number of the Wuhan novel coronavirus (2019-nCoV). Methods.--Based on the susceptible-exposed-infected-removed (SEIR) compartment model and the assumption that the infectious cases with symptoms occurred before January 25, 2020 are resulted from free propagation without intervention, we estimate the basic reproduction number of 2019-nCoV according to the reported confirmed cases and suspected cases, as well as the theoretical estimated number of infected cases by other research teams, together with some epidemiological determinants learned from the severe acute respiratory syndrome. Results The basic reproduction number falls between 2.8 to 3.3 by using the real-time reports on the number of 2019-nCoV infected cases from Peoples Daily in China, and falls between 3.2 and 3.9 on the basis of the predicted number of infected cases from colleagues. Conclusions.--The early transmission ability of 2019-nCoV is closed to or slightly higher than SARS. It is a controllable disease with moderate-high transmissibility. Timely and effective control measures are needed to suppress the further transmissions. Notes Added.--Using a newly reported epidemiological determinants for early 2019-nCoV, the estimated basic reproduction number is in the range [2.2,3.0].
An urgent problem in controlling COVID-19 spreading is to understand the role of undocumented infection. We develop a five-state model for COVID-19, taking into account the unique features of the novel coronavirus, with key parameters determined by t
Since the SARS outbreak in 2003, a lot of predictive epidemiological models have been proposed. At the end of 2019, a novel coronavirus, termed as 2019-nCoV, has broken out and is propagating in China and the world. Here we propose a multi-model ordi
Proteins are key building blocks of virtually all life, providing the material foundation of spider silk, cells, and hair, but also offering other functions from enzymes to drugs, and pathogens like viruses. Based on a nanomechanical analysis of the
The basic reproduction number $R_0$ is a fundamental quantity in epidemiological modeling, reflecting the typical number of secondary infections that arise from a single infected individual. While $R_0$ is widely known to scientists, policymakers, an
Background: Wuhan, China was the epicenter of COVID-19 pandemic. The goal of current study is to understand the infection transmission dynamics before intervention measures were taken. Methods: Data and key events were searched through pubmed and int