ترغب بنشر مسار تعليمي؟ اضغط هنا

Taxi arrival time prediction is an essential part of building intelligent transportation systems. Traditional arrival time estimation methods mainly rely on traffic map feature extraction, which can not model complex situations and nonlinear spatial and temporal relationships. Therefore, we propose a Multi-View Spatial-Temporal Model (MVSTM) to capture the dependence of spatial-temporal and trajectory. Specifically, we use graph2vec to model the spatial view, dual-channel temporal module to model the trajectory view, and structural embedding to model the traffic semantics. Experiments on large-scale taxi trajectory data show that our approach is more effective than the novel method. The source code can be obtained from https://github.com/775269512/SIGSPATIAL-2021-GISCUP-4th-Solution.
In an intelligent transportation system, the key problem of traffic forecasting is how to extract the periodic temporal dependencies and complex spatial correlation. Current state-of-the-art methods for traffic flow forecasting are based on graph arc hitectures and sequence learning models, but they do not fully exploit spatial-temporal dynamic information in the traffic system. Specifically, the temporal dependence of the short-range is diluted by recurrent neural networks, and the existing sequence model ignores local spatial information because the convolution operation uses global average pooling. Besides, there will be some traffic accidents during the transitions of objects causing congestion in the real world that trigger increased prediction deviation. To overcome these challenges, we propose the Spatial-Temporal Conv-sequence Learning (STCL), in which a focused temporal block uses unidirectional convolution to effectively capture short-term periodic temporal dependence, and a spatial-temporal fusion module is able to extract the dependencies of both interactions and decrease the feature dimensions. Moreover, the accidents features impact on local traffic congestion, and position encoding is employed to detect anomalies in complex traffic situations. We conduct a large number of experiments on real-world tasks and verify the effectiveness of our proposed method.
It is challenging to detect curve texts due to their irregular shapes and varying sizes. In this paper, we first investigate the deficiency of the existing curve detection methods and then propose a novel Conditional Spatial Expansion (CSE) mechanism to improve the performance of curve text detection. Instead of regarding the curve text detection as a polygon regression or a segmentation problem, we treat it as a region expansion process. Our CSE starts with a seed arbitrarily initialized within a text region and progressively merges neighborhood regions based on the extracted local features by a CNN and contextual information of merged regions. The CSE is highly parameterized and can be seamlessly integrated into existing object detection frameworks. Enhanced by the data-dependent CSE mechanism, our curve text detection system provides robust instance-level text region extraction with minimal post-processing. The analysis experiment shows that our CSE can handle texts with various shapes, sizes, and orientations, and can effectively suppress the false-positives coming from text-like textures or unexpected texts included in the same RoI. Compared with the existing curve text detection algorithms, our method is more robust and enjoys a simpler processing flow. It also creates a new state-of-art performance on curve text benchmarks with F-score of up to 78.4$%$.
A major challenge to implement the compressed sensing method for channel state information (CSI) acquisition lies in the design of a well-performed measurement matrix to reduce the dimension of sparse channel vectors. The widely adopted randomized me asurement matrices drawn from Gaussian or Bernoulli distribution are not optimal. To tackle this problem, we propose a fully data-driven approach to optimize the measurement matrix for beamspace channel compression, and this method trains a mathematically interpretable autoencoder constructed according to the iterative solution of sparse recovery. The obtained measurement matrix can achieve near perfect CSI recovery with fewer measurements, thus the feedback overhead can be substantially reduced.
In this work, we propose a novel hybrid method for scene text detection namely Correlation Propagation Network (CPN). It is an end-to-end trainable framework engined by advanced Convolutional Neural Networks. Our CPN predicts text objects according t o both top-down observations and the bottom-up cues. Multiple candidate boxes are assembled by a spatial communication mechanism call Correlation Propagation (CP). The extracted spatial features by CNN are regarded as node features in a latticed graph and Correlation Propagation algorithm runs distributively on each node to update the hypothesis of corresponding object centers. The CP process can flexibly handle scale-varying and rotated text objects without using predefined bounding box templates. Benefit from its distributive nature, CPN is computationally efficient and enjoys a high level of parallelism. Moreover, we introduce deformable convolution to the backbone network to enhance the adaptability to long texts. The evaluation on public benchmarks shows that the proposed method achieves state-of-art performance, and it significantly outperforms the existing methods for handling multi-scale and multi-oriented text objects with much lower computation cost.
A novel framework named Markov Clustering Network (MCN) is proposed for fast and robust scene text detection. MCN predicts instance-level bounding boxes by firstly converting an image into a Stochastic Flow Graph (SFG) and then performing Markov Clus tering on this graph. Our method can detect text objects with arbitrary size and orientation without prior knowledge of object size. The stochastic flow graph encode objects local correlation and semantic information. An object is modeled as strongly connected nodes, which allows flexible bottom-up detection for scale-varying and rotated objects. MCN generates bounding boxes without using Non-Maximum Suppression, and it can be fully parallelized on GPUs. The evaluation on public benchmarks shows that our method outperforms the existing methods by a large margin in detecting multioriented text objects. MCN achieves new state-of-art performance on challenging MSRA-TD500 dataset with precision of 0.88, recall of 0.79 and F-score of 0.83. Also, MCN achieves realtime inference with frame rate of 34 FPS, which is $1.5times$ speedup when compared with the fastest scene text detection algorithm.
111 - Yixing Li , Zichuan Liu , Kai Xu 2017
FPGA-based hardware accelerators for convolutional neural networks (CNNs) have obtained great attentions due to their higher energy efficiency than GPUs. However, it is challenging for FPGA-based solutions to achieve a higher throughput than GPU coun terparts. In this paper, we demonstrate that FPGA acceleration can be a superior solution in terms of both throughput and energy efficiency when a CNN is trained with binary constraints on weights and activations. Specifically, we propose an optimized FPGA accelerator architecture tailored for bitwise convolution and normalization that features massive spatial parallelism with deep pipelines stages. A key advantage of the FPGA accelerator is that its performance is insensitive to data batch size, while the performance of GPU acceleration varies largely depending on the batch size of the data. Experiment results show that the proposed accelerator architecture for binary CNNs running on a Virtex-7 FPGA is 8.3x faster and 75x more energy-efficient than a Titan X GPU for processing online individual requests in small batch sizes. For processing static data in large batch sizes, the proposed solution is on a par with a Titan X GPU in terms of throughput while delivering 9.5x higher energy efficiency.
In this paper, we develop a binary convolutional encoder-decoder network (B-CEDNet) for natural scene text processing (NSTP). It converts a text image to a class-distinguished salience map that reveals the categorical, spatial and morphological infor mation of characters. The existing solutions are either memory consuming or run-time consuming that cannot be applied to real-time applications on resource-constrained devices such as advanced driver assistance systems. The developed network can process multiple regions containing characters by one-off forward operation, and is trained to have binary weights and binary feature maps, which lead to both remarkable inference run-time speedup and memory usage reduction. By training with over 200, 000 synthesis scene text images (size of $32times128$), it can achieve $90%$ and $91%$ pixel-wise accuracy on ICDAR-03 and ICDAR-13 datasets. It only consumes $4.59 ms$ inference run-time realized on GPU with a small network size of 2.14 MB, which is up to $8times$ faster and $96%$ smaller than it full-precision version.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا