ترغب بنشر مسار تعليمي؟ اضغط هنا

67 - M. Dalmonte , W. Lechner , Zi Cai 2015
We investigate the quantum phases of hard-core bosonic atoms in an extended Hubbard model where particles interact via soft-shoulder potentials in one dimension. Using a combination of field-theoretical methods and strong-coupling perturbation theory , we demonstrate that the low-energy phase can be a conformal cluster Luttinger liquid (CLL) phase with central charge $c=1$, where the microscopic degrees of freedom correspond to mesoscopic ensembles of particles. Using numerical density-matrix-renormalization-group methods, we demonstrate that the CLL phase, first predicted in [Phys. Rev. Lett. 111, 165302 (2013)], is separated from a conventional Tomonaga-Luttinger liquid by an exotic critical point with central charge $c=3/2$. The latter is expression of an emergent conformal supersymmetry, which is not present in the original Hamiltonian. We discuss the observability of the CLL phase in realistic experimental settings with weakly-dressed Rydberg atoms confined to optical lattices. Using quantum Monte-Carlo simulations, we show that the typical features of CLLs are stable up to comparatively high temperatures. Using exact diagonalizations and quantum trajectory methods, we provide a protocol for adiabatic state preparation as well as quantitative estimates on the effects of particle losses.
In this paper, we provide a comprehensive study of the quantum magnetism in the Mott insulating phases of the 1D Bose-Hubbard model with abelian or non-abelian synthetic gauge fields, using the Density Matrix Renormalization Group (DMRG) method. We f ocus on the interplay between the synthetic gauge field and the asymmetry of the interactions, which give rise to a very general effective magnetic model: a XYZ model with various Dzyaloshinskii-Moriya (DM) interactions. The properties of the different quantum magnetic phases and phases transitions of this model are investigated.
We study a model of interacting bosons that occupy the first excited p-band states of a two-dimensional optical lattice. In contrast to the much studied single band Bose-Hubbard Hamiltonian, this more complex model allows for non-trivial superfluid p hases associated with condensation at non-zero momentum and staggered order of the orbital angular momentum in addition to the superfluid-Mott insulator transition. More specifically, we observe staggered orbital angular momentum order in the Mott phase at commensurate filling and superfluidity at all densities. We also observe a transition between the staggered angular momentum superfluid phase and a striped superfluid, with an alternation of the phase of the superfluid along one direction. The transition between these two phases was observed in a recent experiment, which is then qualitatively well described by our model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا