ترغب بنشر مسار تعليمي؟ اضغط هنا

153 - Hongbin Sun , Zhongzi Wang 2021
In this paper, we prove that any closed orientable 3-manifold $M$ other than $#^k S^1times S^2$ and $S^3$ satisfies the following properties: (1) For any compact orientable 4-manifold $N$ bounded by $M$, the inclusion does not induce an isomorphism o n their fundamental groups $pi_1$. (2) For any map $f:Mto N$ from $M$ to a closed orientable 4-manifold $N$, $f$ does not induce an isomorphism on $pi_1$. Relevant results on higher dimensional manifolds are also obtained.
Non-autoregressive (NAR) modeling has gained more and more attention in speech processing. With recent state-of-the-art attention-based automatic speech recognition (ASR) structure, NAR can realize promising real-time factor (RTF) improvement with on ly small degradation of accuracy compared to the autoregressive (AR) models. However, the recognition inference needs to wait for the completion of a full speech utterance, which limits their applications on low latency scenarios. To address this issue, we propose a novel end-to-end streaming NAR speech recognition system by combining blockwise-attention and connectionist temporal classification with mask-predict (Mask-CTC) NAR. During inference, the input audio is separated into small blocks and then processed in a blockwise streaming way. To address the insertion and deletion error at the edge of the output of each block, we apply an overlapping decoding strategy with a dynamic mapping trick that can produce more coherent sentences. Experimental results show that the proposed method improves online ASR recognition in low latency conditions compared to vanilla Mask-CTC. Moreover, it can achieve a much faster inference speed compared to the AR attention-based models. All of our codes will be publicly available at https://github.com/espnet/espnet.
70 - Luqin Wang , Zi Wang , Chen Wang 2021
Manipulating quantum thermal transport relies on uncovering the principle working cycles of quantum devices. Here, we apply the cycle flux ranking of network analysis to nonequilibrium thermal devices described by graphs of quantum state transitions. To excavate the principal mechanism out of complex transport behaviors, we decompose the quantum-transition network into cycles, calculate the cycle flux by algebraic graph theory, and pick out the dominant cycles with top-ranked fluxes, i.e., the cycle trajectories with highest probabilities. We demonstrate the cycle flux ranking in typical quantum device models, such as a thermal-drag spin-Seebeck pump, and a quantum thermal transistor as thermal switch or heat amplifier. The dominant cycle trajectories indeed elucidate the principal working mechanisms of those quantum devices. The cycle flux analysis provides an alternative perspective that naturally describes the working cycle corresponding to the main functionality of quantum thermal devices, which would further guide the device optimization with desired performance
Deep Metric Learning (DML), a widely-used technique, involves learning a distance metric between pairs of samples. DML uses deep neural architectures to learn semantic embeddings of the input, where the distance between similar examples is small whil e dissimilar ones are far apart. Although the underlying neural networks produce good accuracy on naturally occurring samples, they are vulnerable to adversarially-perturbed samples that reduce performance. We take a first step towards training robust DML models and tackle the primary challenge of the metric losses being dependent on the samples in a mini-batch, unlike standard losses that only depend on the specific input-output pair. We analyze this dependence effect and contribute a robust optimization formulation. Using experiments on three commonly-used DML datasets, we demonstrate 5-76 fold increases in adversarial accuracy, and outperform an existing DML model that sought out to be robust.
130 - Siyuan Shen , Zi Wang , Ping Liu 2021
We present a neural modeling framework for Non-Line-of-Sight (NLOS) imaging. Previous solutions have sought to explicitly recover the 3D geometry (e.g., as point clouds) or voxel density (e.g., within a pre-defined volume) of the hidden scene. In con trast, inspired by the recent Neural Radiance Field (NeRF) approach, we use a multi-layer perceptron (MLP) to represent the neural transient field or NeTF. However, NeTF measures the transient over spherical wavefronts rather than the radiance along lines. We therefore formulate a spherical volume NeTF reconstruction pipeline, applicable to both confocal and non-confocal setups. Compared with NeRF, NeTF samples a much sparser set of viewpoints (scanning spots) and the sampling is highly uneven. We thus introduce a Monte Carlo technique to improve the robustness in the reconstruction. Comprehensive experiments on synthetic and real datasets demonstrate NeTF provides higher quality reconstruction and preserves fine details largely missing in the state-of-the-art.
144 - Zi Wang , Di Guo , Zhangren Tu 2020
For accelerated multi-dimensional NMR spectroscopy, non-uniform sampling is a powerful approach but requires sophisticated algorithms to reconstruct undersampled data. Here, we first devise a high-performance deep learning framework (MoDern), which s hows astonishing performance in robust and high-quality reconstruction of challenging multi-dimensional protein NMR spectra and reliable quantitative measure of the metabolite mixture. Remarkably, the few trainable parameters of MoDern allowed the neural network to be trained on solely synthetic data while generalizing well to experimental undersampled data in various scenarios. Then, we develop a novel artificial intelligence cloud computing platform (XCloud-MoDern), as a reliable, widely-available, ultra-fast, and easy-to-use technique for highly accelerated NMR. All results demonstrate that XCloud-MoDern contributes a promising platform for further development of spectra analysis.
In autonomous navigation of mobile robots, sensors suffer from massive occlusion in cluttered environments, leaving significant amount of space unknown during planning. In practice, treating the unknown space in optimistic or pessimistic ways both se t limitations on planning performance, thus aggressiveness and safety cannot be satisfied at the same time. However, humans can infer the exact shape of the obstacles from only partial observation and generate non-conservative trajectories that avoid possible collisions in occluded space. Mimicking human behavior, in this paper, we propose a method based on deep neural network to predict occupancy distribution of unknown space reliably. Specifically, the proposed method utilizes contextual information of environments and learns from prior knowledge to predict obstacle distributions in occluded space. We use unlabeled and no-ground-truth data to train our network and successfully apply it to real-time navigation in unseen environments without any refinement. Results show that our method leverages the performance of a kinodynamic planner by improving security with no reduction of speed in clustered environments.
The correspondence principle is a cornerstone in the entire construction of quantum mechanics. This principle has been recently challenged by the observation of an early-time exponential increase of the out-of-time-ordered correlator (OTOC) in classi cally non-chaotic systems [E.B. Rozenbaum et al., Phys. Rev. Lett. 125, 014101 (2020)], Here we show that the correspondence principle is restored after a proper treatment of the singular points. Furthermore our results show that the OTOC maintains its role as a diagnostic of chaotic dynamics.
131 - Yinqiu He , Zi Wang , 2020
The likelihood ratio test is widely used in exploratory factor analysis to assess the model fit and determine the number of latent factors. Despite its popularity and clear statistical rationale, researchers have found that when the dimension of the response data is large compared to the sample size, the classical chi-square approximation of the likelihood ratio test statistic often fails. Theoretically, it has been an open problem when such a phenomenon happens as the dimension of data increases; practically, the effect of high dimensionality is less examined in exploratory factor analysis, and there lacks a clear statistical guideline on the validity of the conventional chi-square approximation. To address this problem, we investigate the failure of the chi-square approximation of the likelihood ratio test in high-dimensional exploratory factor analysis, and derive the necessary and sufficient condition to ensure the validity of the chi-square approximation. The results yield simple quantitative guidelines to check in practice and would also provide useful statistical insights into the practice of exploratory factor analysis.
Exponential is a basic signal form, and how to fast acquire this signal is one of the fundamental problems and frontiers in signal processing. To achieve this goal, partial data may be acquired but result in the severe artifacts in its spectrum, whic h is the Fourier transform of exponentials. Thus, reliable spectrum reconstruction is highly expected in the fast sampling in many applications, such as chemistry, biology, and medical imaging. In this work, we propose a deep learning method whose neural network structure is designed by unrolling the iterative process in the model-based state-of-the-art exponentials reconstruction method with low-rank Hankel matrix factorization. With the experiments on synthetic data and realistic biological magnetic resonance signals, we demonstrate that the new method yields much lower reconstruction errors and preserves the low-intensity signals much better.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا