ترغب بنشر مسار تعليمي؟ اضغط هنا

The superconducting order parameter of the first heavy-fermion superconductor CeCu2Si2 is currently under debate. A key ingredient to understand its superconductivity and physical properties is the quasiparticle dispersion and Fermi surface, which re mains elusive experimentally. Here we present measurements from angle-resolved photoemission spectroscopy. Our results emphasize the key role played by the Ce 4f electrons for the low-temperature Fermi surface, highlighting a band-dependent conduction-f electron hybridization. In particular, we find a very heavy quasi-two-dimensional electron band near the bulk X point and moderately heavy three-dimensional hole pockets near the Z point. Comparison with theoretical calculations reveals the strong local correlation in this compound, calling for further theoretical studies. Our results provide the electronic basis to understand the heavy fermion behavior and superconductivity; implications for the enigmatic superconductivity of this compound are also discussed.
87 - Peng Li , Zhongzheng Wu , Fan Wu 2019
Using angle-resolved photoemission spectroscopy (ARPES) and resonant ARPES, we report evidence of strong anisotropic conduction-f electron mixing (c-f mixing) in CeBi by observing a largely expanded Ce-5d pocket at low temperature, with no change in the Bi-6p bands. The Fermi surface (FS) expansion is accompanied by a pronounced spectral weight transfer from the local 4f 0 peak of Ce (corresponding to Ce3+) to the itinerant conduction bands near the Fermi level. Careful analysis suggests that the observed large FS change (with a volume expansion of the electron pocket up to 40%) can most naturally be explained by a small valence change (~ 1%) of Ce, which coexists with a very weak Kondo screening. Our work therefore provides evidence for a FS change driven by real charge fluctuations deep in the Kondo limit, which is made possible by the low carrier density.
46 - Peng Li , Zhongzheng Wu , Fan Wu 2018
Here we report the evolution of bulk band structure and surface states in rare earth mono-bismuthides with partially filled f shell. Utilizing synchrotron-based photoemission spectroscopy, we determined the three-dimensional bulk band structure and identified the bulk band
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا