ترغب بنشر مسار تعليمي؟ اضغط هنا

Existing research for image text retrieval mainly relies on sentence-level supervision to distinguish matched and mismatched sentences for a query image. However, semantic mismatch between an image and sentences usually happens in finer grain, i.e., phrase level. In this paper, we explore to introduce additional phrase-level supervision for the better identification of mismatched units in the text. In practice, multi-grained semantic labels are automatically constructed for a query image in both sentence-level and phrase-level. We construct text scene graphs for the matched sentences and extract entities and triples as the phrase-level labels. In order to integrate both supervision of sentence-level and phrase-level, we propose Semantic Structure Aware Multimodal Transformer (SSAMT) for multi-modal representation learning. Inside the SSAMT, we utilize different kinds of attention mechanisms to enforce interactions of multi-grain semantic units in both sides of vision and language. For the training, we propose multi-scale matching losses from both global and local perspectives, and penalize mismatched phrases. Experimental results on MS-COCO and Flickr30K show the effectiveness of our approach compared to some state-of-the-art models.
Existing research for image captioning usually represents an image using a scene graph with low-level facts (objects and relations) and fails to capture the high-level semantics. In this paper, we propose a Theme Concepts extended Image Captioning (T CIC) framework that incorporates theme concepts to represent high-level cross-modality semantics. In practice, we model theme concepts as memory vectors and propose Transformer with Theme Nodes (TTN) to incorporate those vectors for image captioning. Considering that theme concepts can be learned from both images and captions, we propose two settings for their representations learning based on TTN. On the vision side, TTN is configured to take both scene graph based features and theme concepts as input for visual representation learning. On the language side, TTN is configured to take both captions and theme concepts as input for text representation re-construction. Both settings aim to generate target captions with the same transformer-based decoder. During the training, we further align representations of theme concepts learned from images and corresponding captions to enforce the cross-modality learning. Experimental results on MS COCO show the effectiveness of our approach compared to some state-of-the-art models.
91 - Lu Ji , Jing Li , Zhongyu Wei 2021
Numerous online conversations are produced on a daily basis, resulting in a pressing need to conversation understanding. As a basis to structure a discussion, we identify the responding relations in the conversation discourse, which link response utt erances to their initiations. To figure out who responded to whom, here we explore how the consistency of topic contents and dependency of discourse roles indicate such interactions, whereas most prior work ignore the effects of latent factors underlying word occurrences. We propose a model to learn latent topics and discourse in word distributions, and predict pairwise initiation-response links via exploiting topic consistency and discourse dependency. Experimental results on both English and Chinese conversations show that our model significantly outperforms the previous state of the arts, such as 79 vs. 73 MRR on Chinese customer service dialogues. We further probe into our outputs and shed light on how topics and discourse indicate conversational user interactions.
In this paper, we focus on the problem of unsupervised image-sentence matching. Existing research explores to utilize document-level structural information to sample positive and negative instances for model training. Although the approach achieves p ositive results, it introduces a sampling bias and fails to distinguish instances with high semantic similarity. To alleviate the bias, we propose a new sampling strategy to select additional intra-document image-sentence pairs as positive or negative samples. Furthermore, to recognize the complex pattern in intra-document samples, we propose a Transformer based model to capture fine-grained features and implicitly construct a graph for each document, where concepts in a document are introduced to bridge the representation learning of images and sentences in the context of a document. Experimental results show the effectiveness of our approach to alleviate the bias and learn well-aligned multimodal representations.
Commonsense generation aims at generating plausible everyday scenario description based on a set of provided concepts. Digging the relationship of concepts from scratch is non-trivial, therefore, we retrieve prototypes from external knowledge to assi st the understanding of the scenario for better description generation. We integrate two additional modules, namely position indicator and scaling module, into the pretrained encoder-decoder model for prototype modeling to enhance the knowledge injection procedure. We conduct experiment on CommonGen benchmark, and experimental results show that our method significantly improves the performance on all the metrics.
129 - Xisen Jin , Zhongyu Wei , Junyi Du 2019
The impressive performance of neural networks on natural language processing tasks attributes to their ability to model complicated word and phrase compositions. To explain how the model handles semantic compositions, we study hierarchical explanatio n of neural network predictions. We identify non-additivity and context independent importance attributions within hierarchies as two desirable properties for highlighting word and phrase compositions. We show some prior efforts on hierarchical explanations, e.g. contextual decomposition, do not satisfy the desired properties mathematically, leading to inconsistent explanation quality in different models. In this paper, we start by proposing a formal and general way to quantify the importance of each word and phrase. Following the formulation, we propose Sampling and Contextual Decomposition (SCD) algorithm and Sampling and Occlusion (SOC) algorithm. Human and metrics evaluation on both LSTM models and BERT Transformer models on multiple datasets show that our algorithms outperform prior hierarchical explanation algorithms. Our algorithms help to visualize semantic composition captured by models, extract classification rules and improve human trust of models. Project page: https://inklab.usc.edu/hiexpl/
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا