ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of ethylene autoignition and Deflagration-to-Detonation Transition (DDT) in a one-dimensional shock tube are numerically investigated using a skeletal chemistry including 10 species and 10 reactions. Different combustion modes are investigat ed through considering various premixed gas equivalence ratios (0.2 to 2.0) and incident shock wave Mach numbers (1.8 to 3.2). Four ignition and DDT modes are observed from the studied cases, i.e., no ignition, deflagration combustion, detonation after reflected shock and deflagration behind the incident shock. For detonation development behind the reflected shock, three autoignition hot spots are formed. The first one occurs at the wall surface after the re-compression of the reflected shock and contact surface, which further develops to a reaction shock because of the explosion in the explosion regime. The other two are off the wall, respectively caused by the reflected shock rarefaction wave interaction and reaction induction in the compressed mixture. The last hot spot develops to a reaction wave and couples with the reflected shock after a DDT process, which eventually leads to detonation combustion. For deflagration development behind the reflected shock, the wave interactions, wall surface autoignition hot spot as well as its induction of reaction shock are qualitatively similar to the mode of detonation after incident shock reflection, before the reflected shock rarefaction wave collision point. However, only one hot spot is induced after the collision, which also develops to a reaction wave but cannot catch up with the reflected shock. For deflagration behind the incident shock, deflagration combustion is induced by the incident shock compression whereas detonation occurs after the shock reflection.
The Multiple Mapping Conditioning / Large Eddy Simulation (MMC-LES) approach is used to simulate a supersonic lifted hydrogen jet flame, which features shock-induced autoignition, shock-flame interaction, lifted flame stabilization, and finite-rate c hemistry effects. The shocks and expansion waves, shock-reaction interactions and overall flame characteristics are accurately reproduced by the model. Predictions are compared with the detailed experimental data for the mean axial velocity, mean and root-mean-square temperature, species mole fractions, and mixture fraction at various locations. The predicted and experimentally observed flame structures are compared through scatter plots of species mole fractions and temperature against mixture fraction. Unlike most past MMC-LES which has been applied to low-Mach flames, in this supersonic flame case pressure work and viscous heating are included in the stochastic FDF equations. Analysis indicates that the pressure work plays an important role in autoignition induction and flame stabilization, whereas viscous heating is only significant in shear layers (but still negligibly small compared to the pressure work). The evolutions of particle information subject to local gas dynamics are extracted through trajectory analysis on representative fuel and oxidizer particles. The particles intermittently enter the extinction region and may be deviated from the full burning or mixing lines under the effects of shocks, expansion waves and viscous heating. The chemical explosive mode analysis performed on the Lagrangian particles shows that temperature, the H and OH radicals contribute dominantly to CEM respectively in the central fuel jet, fuel-rich and fuel-lean sides. The pronounced particle Damkohler numbers first occur in the fuel jet / coflow shear layer, enhanced at the first shock intersection point and peak around the flame stabilization point.
One-dimensional numerical simulations based on hybrid Eulerian-Lagrangian method are performed to study the interactions between propagating shocks and dispersed evaporating water droplets. Two-way coupling for exchanges of mass, momentum, energy and vapour species is adopted for the dilute two-phase gas-droplet flows. Interphase interactions and droplet breakup dynamics are investigated with initial droplet diameters of 30, 50, 70 and 90 {mu}m under an incident shock wave Mach number of 1.3. Novel two-phase flow phenomena are observed when droplet breakup occurs. First, droplets near the two-phase contact surface show obvious dispersed distribution because of the reflected pressure wave that propagates in the reverse direction of the leading shock. The reflected pressure wave grows stronger for larger droplets. Second, spatial oscillations of the gas phase pressure, droplet quantities (e.g., diameter and net force) and two-phase interactions (e.g., mass, momentum, and energy exchange), are observed in the post-shock region when droplet breakup occurs, which are caused by shock / droplet interactions. Third, the spatial distribution of droplets (i.e., number density, volume fraction) also shows strong oscillation in the post-shock region when droplet breakup occurs, which is caused by the oscillating force exerted on the droplets.
One-dimensional numerical simulations based on hybrid Eulerian-Lagrangian approach are performed to investigate the interactions between propagating shock waves and dispersed evaporating water droplets in two-phase gas-droplet flows. Two-way coupling for interphase exchanges of mass, momentum and energy is adopted. Parametric study on shock attenuation, droplet evaporation, motion and heating is conducted, through considering various initial droplet diameters (5-20 {mu}m), number densities (2.5 x 1011 - 2 x 1012 1/m3) and incident shock Mach numbers (1.17-1.9). It is found that the leading shock may be attenuated to sonic wave and even subsonic wave when droplet volume fraction is large and/or incident shock Mach number is low. Attenuation in both strength and propagation speed of the leading shock is mainly caused by momentum transfer to the droplets that interact at the shock front. Total pressure recovery is observed in the evaporation region, whereas pressure loss results from shock compression, droplet drag and pressure gradient force behind the shock front. Recompression of the region between the leading shock and two-phase contact surface is observed when the following compression wave is supersonic. After a critical point, this region gets stable in width and interphase exchanges in mass, momentum, and energy. However, the recompression phenomenon is sensitive to droplet volume fraction and may vanish with high droplet loading. For an incident shock Mach number of 1.6, recompression only occurs when the initial droplet volume fraction is below 3.28 x 10-5.
A hybrid Eulerian-Lagrangian solver RYrhoCentralFoam is developed based on OpenFOAM to simulate detonative combustion in two-phase gas-liquid mixtures. For Eulerian gas phase, RYrhoCentralFoam enjoys second order of accuracy in time and space discret izations and is based on finite volume method on polyhedral cells. The following developments are made based on the standard compressible flow solver rhoCentralFoam in OpenFOAM: (1) multi-component species transport, (2) detailed fuel chemistry for gas phase combustion, and (3) Lagrangian solver for gas-droplet two-phase flows and sub-models for liquid droplets. To extensively verify and validate the developments and implementations of the solver and models, a series of benchmark cases are studied, including non-reacting multi-component gaseous flows, purely gaseous detonations, and two-phase gas-droplet mixtures. The results show that the RYrhoCentralFoam solver can accurately predict the flow discontinuities (e.g. shock wave and expansion wave), molecular diffusion, auto-ignition and shock-induced ignition. Also, the RYrhoCentralFoam solver can accurately simulate gaseous detonation propagation for different fuels (e.g. hydrogen and methane), about propagation speed, detonation frontal structures and cell size. Sub-models related to the droplet phase are verified and/or validated against analytical and experimental data. It is also found that the RYrhoCentralFoam solver is able to capture the main quantities and features of the gas-droplet two-phase detonations, including detonation propagation speed, interphase interactions and detonation frontal structures. As our future work, RYrhoCentralFoam solver can also be extended for simulating two-phase detonations in dense droplet sprays.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا