ترغب بنشر مسار تعليمي؟ اضغط هنا

Eulerian-Lagrangian modelling of detonative combustion in two-phase gas-droplet mixtures with OpenFOAM: validations and verifications

65   0   0.0 ( 0 )
 نشر من قبل Huangwei Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A hybrid Eulerian-Lagrangian solver RYrhoCentralFoam is developed based on OpenFOAM to simulate detonative combustion in two-phase gas-liquid mixtures. For Eulerian gas phase, RYrhoCentralFoam enjoys second order of accuracy in time and space discretizations and is based on finite volume method on polyhedral cells. The following developments are made based on the standard compressible flow solver rhoCentralFoam in OpenFOAM: (1) multi-component species transport, (2) detailed fuel chemistry for gas phase combustion, and (3) Lagrangian solver for gas-droplet two-phase flows and sub-models for liquid droplets. To extensively verify and validate the developments and implementations of the solver and models, a series of benchmark cases are studied, including non-reacting multi-component gaseous flows, purely gaseous detonations, and two-phase gas-droplet mixtures. The results show that the RYrhoCentralFoam solver can accurately predict the flow discontinuities (e.g. shock wave and expansion wave), molecular diffusion, auto-ignition and shock-induced ignition. Also, the RYrhoCentralFoam solver can accurately simulate gaseous detonation propagation for different fuels (e.g. hydrogen and methane), about propagation speed, detonation frontal structures and cell size. Sub-models related to the droplet phase are verified and/or validated against analytical and experimental data. It is also found that the RYrhoCentralFoam solver is able to capture the main quantities and features of the gas-droplet two-phase detonations, including detonation propagation speed, interphase interactions and detonation frontal structures. As our future work, RYrhoCentralFoam solver can also be extended for simulating two-phase detonations in dense droplet sprays.

قيم البحث

اقرأ أيضاً

We revisit the issue of Lagrangian irreversibility in the context of recent results [Xu, et al., PNAS, 111, 7558 (2014)] on flight-crash events in turbulent flows and show how extreme events in the Eulerian dissipation statistics are related to the s tatistics of power-fluctuations for tracer trajectories. Surprisingly, we find that particle trajectories in intense dissipation zones are dominated by energy gains sharper than energy losses, contrary to flight-crashes, through a pressure-gradient driven take-off phenomenon. Our conclusions are rationalised by analysing data from simulations of three-dimensional intermittent turbulence, as well as from non-intermittent decimated flows. Lagrangian irreversibility is found to persist even in the latter case, wherein fluctuations of the dissipation rate are shown to be relatively mild and to follow probability distribution functions with exponential tails.
The Lagrangian (LA) and Eulerian Acceleration (EA) properties of fluid particles in homogeneous turbulence with uniform shear and uniform stable stratification are studied using direct numerical simulations. The Richardson number is varied from $Ri=0 $, corresponding to unstratified shear flow, to $Ri=1$, corresponding to strongly stratified shear flow. The probability density functions (pdfs) of both LA and EA have a stretched-exponential shape and they show a strong and similar influence on the Richardson number. The extreme values of the EA are stronger than those observed for the LA. Geometrical statistics explain that the magnitude of the EA is larger than its Lagrangian counterpart due to the mutual cancellation of the Eulerian and convective acceleration, as both vectors statistically show an anti-parallel preference. A wavelet-based scale-dependent decomposition of the LA and EA is performed. The tails of the acceleration pdfs grow heavier for smaller scales of turbulent motion. Hence the flatness increases with decreasing scale, indicating stronger intermittency at smaller scales. The joint pdfs of the LA and EA indicate a trend to stronger correlations with increasing Richardson number and at larger scales of the turbulent motion. A consideration of the terms in the Navier--Stokes equation shows that the LA is mainly determined by the pressure-gradient term, while the EA is dominated by the nonlinear convection term.
A phenomenological theory of the fluctuations of velocity occurring in a fully developed homogeneous and isotropic turbulent flow is presented. The focus is made on the fluctuations of the spatial (Eulerian) and temporal (Lagrangian) velocity increme nts. The universal nature of the intermittency phenomenon as observed in experimental measurements and numerical simulations is shown to be fully taken into account by the multiscale picture proposed by the multifractal formalism, and its extensions to the dissipative scales and to the Lagrangian framework. The article is devoted to the presentation of these arguments and to their comparisons against empirical data. In particular, explicit predictions of the statistics, such as probability density functions and high order moments, of the velocity gradients and acceleration are derived. In the Eulerian framework, at a given Reynolds number, they are shown to depend on a single parameter function called the singularity spectrum and to a universal constant governing the transition between the inertial and dissipative ranges. The Lagrangian singularity spectrum compares well with its Eulerian counterpart by a transformation based on incompressibility, homogeneity and isotropy and the remaining constant is shown to be difficult to estimate on empirical data. It is finally underlined the limitations of the increment to quantify accurately the singular nature of Lagrangian velocity. This is confirmed using higher order increments unbiased by the presence of linear trends, as they are observed on velocity along a trajectory.
Three-dimensional laminar flow structures with mixing, chemical reaction, normal strain, and shear strain qualitatively representative of turbulent combustion at the small scales are analyzed. A mixing layer is subjected to counterflow in the transve rse y- and z-directions. Both non-reactive and reactive flows are examined. Reduction of the three-dimensional boundary-layer equations to a one-dimensional similar form is obtained allowing for heat and mass diffusion with variations in density and properties. In steady configurations, a set of ODEs governs the three velocity components as well as the scalar-field variables. A flamelet model for individual diffusion flames with combined shear and normal strain is developed. Another model with solution in similar form is obtained for a configuration with a dominant diffusion flame and a weaker fuel-rich premixed flame. Results for the velocity and scalar fields are found for ranges of Damkohler number Da, normal strain rate due to the counterflow, streamwise-velocity ratio across the mixing layer, Prandtl number, and Mach number. For the flamelet model, a conserved scalar is cast as the independent variable to give an alternative description of the results. The imposed normal strain decreases mixing-layer thickness and increases scalar gradients and transport rates. There is indication of diffusion control for partially premixed flames in the multi-branched flame situation. The enhancement of the mixing and combustion rates by imposed normal strain on a shear layer can be very substantial. Also, the imposition of shear strain and thereby vorticity on the counterflow can be substantial indicating the need for flamelet models with both shear strain and normal strain.
We develop a stochastic model for Lagrangian velocity as it is observed in experimental and numerical fully developed turbulent flows. We define it as the unique statistically stationary solution of a causal dynamics, given by a stochastic differenti al equation. In comparison to previously proposed stochastic models, the obtained process is infinitely differentiable at a given finite Reynolds number, and its second-order statistical properties converge to those of an Ornstein-Uhlenbeck process in the infinite Reynolds number limit. In this limit, it exhibits furthermore intermittent scaling properties, as they can be quantified using higher-order statistics. To achieve this, we begin with generalizing the two-layered embedded stochastic process of Sawford (1991) by considering an infinite number of layers. We then study, both theoretically and numerically, the convergence towards a smooth (i.e. infinitely differentiable) Gaussian process. To include intermittent corrections, we follow similar considerations as for the multifractal random walk of Bacry et al. (2001). We derive in an exact manner the statistical properties of this process, and compare them to those estimated from Lagrangian trajectories extracted from numerically simulated turbulent flows. Key predictions of the multifractal formalism regarding acceleration correlation function and high-order structure functions are also derived. Through these predictions, we understand phenomenologically peculiar behaviours of the fluctuations in the dissipative range, that are not reproduced by our stochastic process. The proposed theoretical method regarding the modelling of infinitely differentiability opens the route to the full stochastic modelling of velocity, including the peculiar action of viscosity on the very fine scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا