ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning RAW-to-sRGB mapping has drawn increasing attention in recent years, wherein an input raw image is trained to imitate the target sRGB image captured by another camera. However, the severe color inconsistency makes it very challenging to gener ate well-aligned training pairs of input raw and target sRGB images. While learning with inaccurately aligned supervision is prone to causing pixel shift and producing blurry results. In this paper, we circumvent such issue by presenting a joint learning model for image alignment and RAW-to-sRGB mapping. To diminish the effect of color inconsistency in image alignment, we introduce to use a global color mapping (GCM) module to generate an initial sRGB image given the input raw image, which can keep the spatial location of the pixels unchanged, and the target sRGB image is utilized to guide GCM for converting the color towards it. Then a pre-trained optical flow estimation network (e.g., PWC-Net) is deployed to warp the target sRGB image to align with the GCM output. To alleviate the effect of inaccurately aligned supervision, the warped target sRGB image is leveraged to learn RAW-to-sRGB mapping. When training is done, the GCM module and optical flow network can be detached, thereby bringing no extra computation cost for inference. Experiments show that our method performs favorably against state-of-the-arts on ZRR and SR-RAW datasets. With our joint learning model, a light-weight backbone can achieve better quantitative and qualitative performance on ZRR dataset. Codes are available at https://github.com/cszhilu1998/RAW-to-sRGB.
Monte Carlo (MC) dropout is a simple and efficient ensembling method that can improve the accuracy and confidence calibration of high-capacity deep neural network models. However, MC dropout is not as effective as more compute-intensive methods such as deep ensembles. This performance gap can be attributed to the relatively poor quality of individual models in the MC dropout ensemble and their lack of diversity. These issues can in turn be traced back to the coupled training and substantial parameter sharing of the dropout models. Motivated by this perspective, we propose a strategy to compute an ensemble of subnetworks, each corresponding to a non-overlapping dropout mask computed via a pruning strategy and trained independently. We show that the proposed subnetwork ensembling method can perform as well as standard deep ensembles in both accuracy and uncertainty estimates, yet with a computational efficiency similar to MC dropout. Lastly, using several computer vision datasets like CIFAR10/100, CUB200, and Tiny-Imagenet, we experimentally demonstrate that subnetwork ensembling also consistently outperforms recently proposed approaches that efficiently ensemble neural networks.
This paper reviews the second AIM learned ISP challenge and provides the description of the proposed solutions and results. The participating teams were solving a real-world RAW-to-RGB mapping problem, where to goal was to map the original low-qualit y RAW images captured by the Huawei P20 device to the same photos obtained with the Canon 5D DSLR camera. The considered task embraced a number of complex computer vision subtasks, such as image demosaicing, denoising, white balancing, color and contrast correction, demoireing, etc. The target metric used in this challenge combined fidelity scores (PSNR and SSIM) with solutions perceptual results measured in a user study. The proposed solutions significantly improved the baseline results, defining the state-of-the-art for practical image signal processing pipeline modeling.
Calibrated estimates of uncertainty are critical for many real-world computer vision applications of deep learning. While there are several widely-used uncertainty estimation methods, dropout inference stands out for its simplicity and efficacy. This technique, however, requires multiple forward passes through the network during inference and therefore can be too resource-intensive to be deployed in real-time applications. We propose a simple, easy-to-optimize distillation method for learning the conditional predictive distribution of a pre-trained dropout model for fast, sample-free uncertainty estimation in computer vision tasks. We empirically test the effectiveness of the proposed method on both semantic segmentation and depth estimation tasks and demonstrate our method can significantly reduce the inference time, enabling real-time uncertainty quantification, while achieving improved quality of both the uncertainty estimates and predictive performance over the regular dropout model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا