ترغب بنشر مسار تعليمي؟ اضغط هنا

Teleoperation of robots enables remote intervention in distant and dangerous tasks without putting the operator in harms way. However, remote operation faces fundamental challenges due to limits in communication delay and bandwidth. The proposed work improves the performances of teleoperation architecture based on Fractal Impedance Controller (FIC), by integrating the most recent manipulation architecture in the haptic teleoperation pipeline. The updated controller takes advantage of the inverse kinematics optimisation in the manipulation, and hence improves dynamic interactions during fine manipulation without renouncing the robustness of the FIC controller. Additionally, the proposed method allows an online trade-off between the manipulation controller and the teleoperated behaviour, allowing a safe superimposition of these two behaviours. The validated experimental results show that the proposed method is robust to reduced communication bandwidth and delays. Moreover, we demonstrated that the remote teleoperated robot remains stable and safe to interact with, even when the communication with the master side is abruptly interrupted.
Robust dynamic interactions are required to move robots in daily environments alongside humans. Optimisation and learning methods have been used to mimic and reproduce human movements. However, they are often not robust and their generalisation is li mited. This work proposed a hierarchical control architecture for robot manipulators and provided capabilities of reproducing human-like motions during unknown interaction dynamics. Our results show that the reproduced end-effector trajectories can preserve the main characteristics of the initial human motion recorded via a motion capture system, and are robust against external perturbations. The data indicate that some detailed movements are hard to reproduce due to the physical limits of the hardware that cannot reach the same velocity recorded in human movements. Nevertheless, these technical problems can be addressed by using better hardware and our proposed algorithms can still be applied to produce imitated motions.
Legged robots are becoming increasingly powerful and popular in recent years for their potential to bring the mobility of autonomous agents to the next level. This work presents a deep reinforcement learning approach that learns a robust Lidar-based perceptual locomotion policy in a partially observable environment using Proximal Policy Optimisation. Visual perception is critical to actively overcome challenging terrains, and to do so, we propose a novel learning strategy: Dynamic Reward Strategy (DRS), which serves as effective heuristics to learn a versatile gait using a neural network architecture without the need to access the history data. Moreover, in a modified version of the OpenAI gym environment, the proposed work is evaluated with scores over 90% success rate in all tested challenging terrains.
60 - Jiacheng Gu , Zhibin Li 2021
This work proposed an efficient learning-based framework to learn feedback control policies from human teleoperated demonstrations, which achieved obstacle negotiation, staircase traversal, slipping control and parcel delivery for a tracked robot. Du e to uncertainties in real-world scenarios, eg obstacle and slippage, closed-loop feedback control plays an important role in improving robustness and resilience, but the control laws are difficult to program manually for achieving autonomous behaviours. We formulated an architecture based on a long-short-term-memory (LSTM) neural network, which effectively learn reactive control policies from human demonstrations. Using datasets from a few real demonstrations, our algorithm can directly learn successful policies, including obstacle-negotiation, stair-climbing and delivery, fall recovery and corrective control of slippage. We proposed decomposition of complex robot actions to reduce the difficulty of learning the long-term dependencies. Furthermore, we proposed a method to efficiently handle non-optimal demos and to learn new skills, since collecting enough demonstration can be time-consuming and sometimes very difficult on a real robotic system.
Assessing the performance of human movements during teleoperation and virtual reality is a challenging problem, particularly in 3D space due to complex spatial settings. Despite the presence of a multitude of metrics, a compelling standardized 3D met ric is yet missing, aggravating inter-study comparability between different studies. Hence, evaluating human performance in virtual environments is a long-standing research goal, and a performance metric that combines two or more metrics under one formulation remains largely unexplored, particularly in higher dimensions. The absence of such a metric is primarily attributed to the discrepancies between pointing and manipulation, the complex spatial variables in 3D, and the combination of translational and rotational movements altogether. In this work, four experiments were designed and conducted with progressively higher spatial complexity to study and compare existing metrics thoroughly. The research goal was to quantify the difficulty of these 3D tasks and model human performance sufficiently in full 3D peripersonal space. Consequently, a new model extension has been proposed and its applicability has been validated across all the experimental results, showing improved modelling and representation of human performance in combined movements of 3D object pointing and manipulation tasks than existing work. Lastly, the implications on 3D interaction, teleoperation and object task design in virtual reality are discussed.
In legged locomotion, the relationship between different gait behaviors and energy consumption must consider the full-body dynamics and the robot control as a whole, which cannot be captured by simple models. This work studies the robot dynamics and whole-body optimal control as a coupled system to investigate energy consumption during balance recovery. We developed a 2-phase nonlinear optimization pipeline for dynamic stepping, which generates reachability maps showing complex energy-stepping relations. We optimize gait parameters to search all reachable locations and quantify the energy cost during dynamic transitions, which allows studying the relationship between energy consumption and stepping locations given different initial conditions. We found that to achieve efficient actuation, the stepping location and timing can have simple approximations close to the underlying optimality. Despite the complexity of this nonlinear process, we show that near-minimal effort stepping locations fall within a region of attractions, rather than a narrow solution space suggested by a simple model. This provides new insights into the non-uniqueness of near-optimal solutions in robot motion planning and control, and the diversity of stepping behavior in humans.
Assessing human performance in robotic scenarios such as those seen in telepresence and teleoperation has always been a challenging task. With the recent spike in mixed reality technologies and the subsequent focus by researchers, new pathways have o pened in elucidating human perception and maximising overall immersion. Yet with the multitude of different assessment methods in evaluating operator performance in virtual environments within the field of HCI and HRI, inter-study comparability and transferability are limited. In this short paper, we present a brief overview of existing methods in assessing operator performance including subjective and objective approaches while also attempting to capture future technical challenges and frontiers. The ultimate goal is to assist and pinpoint readers towards potentially important directions with the future hope of providing a unified immersion framework for teleoperation and telepresence by standardizing a set of guidelines and evaluation methods.
This paper presents a novel approach using sensitivity analysis for generalizing Differential Dynamic Programming (DDP) to systems characterized by implicit dynamics, such as those modelled via inverse dynamics and variational or implicit integrators . It leads to a more general formulation of DDP, enabling for example the use of the faster recursive Newton-Euler inverse dynamics. We leverage the implicit formulation for precise and exact contact modelling in DDP, where we focus on two contributions: (1) Contact dynamics in acceleration level that enables high-order integration schemes; (2) Formulation using an invertible contact model in the forward pass and a closed form solution in the backward pass to improve the numerical resolution of contacts. The performance of the proposed framework is validated (1) by comparing implicit versus explicit DDP for the swing-up of a double pendulum, and (2) by planning motions for two tasks using a single leg model making multi-body contacts with the environment: standing up from ground, where a priori contact enumeration is challenging, and maintaining balance under an external perturbation.
This work developed a meta-learning approach that adapts the control policy on the fly to different changing conditions for robust locomotion. The proposed method constantly updates the interaction model, samples feasible sequences of actions of esti mated the state-action trajectories, and then applies the optimal actions to maximize the reward. To achieve online model adaptation, our proposed method learns different latent vectors of each training condition, which are selected online given the newly collected data. Our work designs appropriate state space and reward functions, and optimizes feasible actions in an MPC fashion which are then sampled directly in the joint space considering constraints, hence requiring no prior design of specific walking gaits. We further demonstrate the robots capability of detecting unexpected changes during interaction and adapting control policies quickly. The extensive validation on the SpotMicro robot in a physics simulation shows adaptive and robust locomotion skills under varying ground friction, external pushes, and different robot models including hardware faults and changes.
Accurate and automated gland segmentation on histology tissue images is an essential but challenging task in the computer-aided diagnosis of adenocarcinoma. Despite their prevalence, deep learning models always require a myriad number of densely anno tated training images, which are difficult to obtain due to extensive labor and associated expert costs related to histology image annotations. In this paper, we propose the pairwise relation-based semi-supervised (PRS^2) model for gland segmentation on histology images. This model consists of a segmentation network (S-Net) and a pairwise relation network (PR-Net). The S-Net is trained on labeled data for segmentation, and PR-Net is trained on both labeled and unlabeled data in an unsupervised way to enhance its image representation ability via exploiting the semantic consistency between each pair of images in the feature space. Since both networks share their encoders, the image representation ability learned by PR-Net can be transferred to S-Net to improve its segmentation performance. We also design the object-level Dice loss to address the issues caused by touching glands and combine it with other two loss functions for S-Net. We evaluated our model against five recent methods on the GlaS dataset and three recent methods on the CRAG dataset. Our results not only demonstrate the effectiveness of the proposed PR-Net and object-level Dice loss, but also indicate that our PRS^2 model achieves the state-of-the-art gland segmentation performance on both benchmarks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا