ترغب بنشر مسار تعليمي؟ اضغط هنا

Metrics for 3D Object Pointing and Manipulation in Virtual Reality

93   0   0.0 ( 0 )
 نشر من قبل Eleftherios Triantafyllidis Mr.
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Assessing the performance of human movements during teleoperation and virtual reality is a challenging problem, particularly in 3D space due to complex spatial settings. Despite the presence of a multitude of metrics, a compelling standardized 3D metric is yet missing, aggravating inter-study comparability between different studies. Hence, evaluating human performance in virtual environments is a long-standing research goal, and a performance metric that combines two or more metrics under one formulation remains largely unexplored, particularly in higher dimensions. The absence of such a metric is primarily attributed to the discrepancies between pointing and manipulation, the complex spatial variables in 3D, and the combination of translational and rotational movements altogether. In this work, four experiments were designed and conducted with progressively higher spatial complexity to study and compare existing metrics thoroughly. The research goal was to quantify the difficulty of these 3D tasks and model human performance sufficiently in full 3D peripersonal space. Consequently, a new model extension has been proposed and its applicability has been validated across all the experimental results, showing improved modelling and representation of human performance in combined movements of 3D object pointing and manipulation tasks than existing work. Lastly, the implications on 3D interaction, teleoperation and object task design in virtual reality are discussed.

قيم البحث

اقرأ أيضاً

Interaction in virtual reality (VR) environments is essential to achieve a pleasant and immersive experience. Most of the currently existing VR applications, lack of robust object grasping and manipulation, which are the cornerstone of interactive sy stems. Therefore, we propose a realistic, flexible and robust grasping system that enables rich and real-time interactions in virtual environments. It is visually realistic because it is completely user-controlled, flexible because it can be used for different hand configurations, and robust because it allows the manipulation of objects regardless their geometry, i.e. hand is automatically fitted to the object shape. In order to validate our proposal, an exhaustive qualitative and quantitative performance analysis has been carried out. On the one hand, qualitative evaluation was used in the assessment of the abstract aspects such as: hand movement realism, interaction realism and motor control. On the other hand, for the quantitative evaluation a novel error metric has been proposed to visually analyze the performed grips. This metric is based on the computation of the distance from the finger phalanges to the nearest contact point on the object surface. These contact points can be used with different application purposes, mainly in the field of robotics. As a conclusion, system evaluation reports a similar performance between users with previous experience in virtual reality applications and inexperienced users, referring to a steep learning curve.
We propose a new approach for interaction in Virtual Reality (VR) using mobile robots as proxies for haptic feedback. This approach allows VR users to have the experience of sharing and manipulating tangible physical objects with remote collaborators . Because participants do not directly observe the robotic proxies, the mapping between them and the virtual objects is not required to be direct. In this paper, we describe our implementation, various scenarios for interaction, and a preliminary user study.
Virtual Reality (VR) enables users to collaborate while exploring scenarios not realizable in the physical world. We propose CollabVR, a distributed multi-user collaboration environment, to explore how digital content improves expression and understa nding of ideas among groups. To achieve this, we designed and examined three possible configurations for participants and shared manipulable objects. In configuration (1), participants stand side-by-side. In (2), participants are positioned across from each other, mirrored face-to-face. In (3), called eyes-free, participants stand side-by-side looking at a shared display, and draw upon a horizontal surface. We also explored a telepathy mode, in which participants could see from each others point of view. We implemented 3DSketch visual objects for participants to manipulate and move between virtual content boards in the environment. To evaluate the system, we conducted a study in which four people at a time used each of the three configurations to cooperate and communicate ideas with each other. We have provided experimental results and interview responses.
225 - Luis Valente 2016
This paper proposes the concept of live-action virtual reality games as a new genre of digital games based on an innovative combination of live-action, mixed-reality, context-awareness, and interaction paradigms that comprise tangible objects, contex t-aware input devices, and embedded/embodied interactions. Live-action virtual reality games are live-action games because a player physically acts out (using his/her real body and senses) his/her avatar (his/her virtual representation) in the game stage, which is the mixed-reality environment where the game happens. The game stage is a kind of augmented virtuality; a mixed-reality where the virtual world is augmented with real-world information. In live-action virtual reality games, players wear HMD devices and see a virtual world that is constructed using the physical world architecture as the basic geometry and context information. Physical objects that reside in the physical world are also mapped to virtual elements. Live-action virtual reality games keeps the virtual and real-worlds superimposed, requiring players to physically move in the environment and to use different interaction paradigms (such as tangible and embodied interaction) to complete game activities. This setup enables the players to touch physical architectural elements (such as walls) and other objects, feeling the game stage. Players have free movement and may interact with physical objects placed in the game stage, implicitly and explicitly. Live-action virtual reality games differ from similar game concepts because they sense and use contextual information to create unpredictable game experiences, giving rise to emergent gameplay.
We present PhyShare, a new haptic user interface based on actuated robots. Virtual reality has recently been gaining wide adoption, and an effective haptic feedback in these scenarios can strongly support users sensory in bridging virtual and physica l world. Since participants do not directly observe these robotic proxies, we investigate the multiple mappings between physical robots and virtual proxies that can utilize the resources needed to provide a well rounded VR experience. PhyShare bots can act either as directly touchable objects or invisible carriers of physical objects, depending on different scenarios. They also support distributed collaboration, allowing remotely located VR collaborators to share the same physical feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا