ترغب بنشر مسار تعليمي؟ اضغط هنا

88 - Ke Li , Renzhi Chen 2021
Multi-objective optimization problems are ubiquitous in real-world science, engineering and design optimization problems. It is not uncommon that the objective functions are as a black box, the evaluation of which usually involve time-consuming and/o r costly physical experiments. Data-driven evolutionary optimization can be used to search for a set of non-dominated trade-off solutions, where the expensive objective functions are approximated as a surrogate model. In this paper, we propose a framework for implementing batched data-driven evolutionary multi-objective optimization. It is so general that any off-the-shelf evolutionary multi-objective optimization algorithms can be applied in a plug-in manner. In particular, it has two unique components: 1) based on the Karush-Kuhn-Tucker conditions, a manifold interpolation approach that explores more diversified solutions with a convergence guarantee along the manifold of the approximated Pareto-optimal set; and 2) a batch recommendation approach that reduces the computational time of the optimization process by evaluating multiple samples at a time in parallel. Experiments on 136 benchmark test problem instances with irregular Pareto-optimal front shapes against six state-of-the-art surrogate-assisted EMO algorithms fully demonstrate the effectiveness and superiority of our proposed framework. In particular, our proposed framework is featured with a faster convergence and a stronger resilience to various PF shapes.
With AlphaGo defeats top human players, reinforcement learning(RL) algorithms have gradually become the code-base of building stronger artificial intelligence(AI). The RL algorithm design firstly needs to adapt to the specific environment, so the des igned environment guides the rapid and profound development of RL algorithms. However, the existing environments, which can be divided into real world games and customized toy environments, have obvious shortcomings. For real world games, it is designed for human entertainment, and too much difficult for most of RL researchers. For customized toy environments, there is no widely accepted unified evaluation standard for all RL algorithms. Therefore, we introduce the first virtual user-friendly environment framework for RL. In this framework, the environment can be easily configured to realize all kinds of RL tasks in the mainstream research. Then all the mainstream state-of-the-art(SOTA) RL algorithms can be conveniently evaluated and compared. Therefore, our contributions mainly includes the following aspects: 1.single configured environment for all classification of SOTA RL algorithms; 2.combined environment of more than one classification RL algorithms; 3.the evaluation standard for all kinds of RL algorithms. With all these efforts, a possibility for breeding an AI with capability of general competency in a variety of tasks is provided, and maybe it will open up a new chapter for AI.
433 - Xu Shi , Jintao Wang , Guozhi Chen 2021
Reconfigurable intelligent surface (RIS) has been recognized as a potential technology for 5G beyond and attracted tremendous research attention. However, channel estimation in RIS-aided system is still a critical challenge due to the excessive amoun t of parameters in cascaded channel. The existing compressive sensing (CS)-based RIS estimation schemes only adopt incomplete sparsity, which induces redundant pilot consumption. In this paper, we exploit the specific triple-structured sparsity of the cascaded channel, i.e., the common column sparsity, structured row sparsity after offset compensation and the common offsets among all users. Then a novel multi-user joint estimation algorithm is proposed. Simulation results show that our approach can significantly reduce pilot overhead in both ULA and UPA scenarios.
Spoken Language Understanding (SLU), a core component of the task-oriented dialogue system, expects a shorter inference latency due to the impatience of humans. Non-autoregressive SLU models clearly increase the inference speed but suffer uncoordinat ed-slot problems caused by the lack of sequential dependency information among each slot chunk. To gap this shortcoming, in this paper, we propose a novel non-autoregressive SLU model named Layered-Refine Transformer, which contains a Slot Label Generation (SLG) task and a Layered Refine Mechanism (LRM). SLG is defined as generating the next slot label with the token sequence and generated slot labels. With SLG, the non-autoregressive model can efficiently obtain dependency information during training and spend no extra time in inference. LRM predicts the preliminary SLU results from Transformers middle states and utilizes them to guide the final prediction. Experiments on two public datasets indicate that our model significantly improves SLU performance (1.5% on Overall accuracy) while substantially speed up (more than 10 times) the inference process over the state-of-the-art baseline.
134 - Renjie Xie , Wei Xu , Yanzhi Chen 2021
Radio-frequency fingerprints~(RFFs) are promising solutions for realizing low-cost physical layer authentication. Machine learning-based methods have been proposed for RFF extraction and discrimination. However, most existing methods are designed for the closed-set scenario where the set of devices is remains unchanged. These methods can not be generalized to the RFF discrimination of unknown devices. To enable the discrimination of RFF from both known and unknown devices, we propose a new end-to-end deep learning framework for extracting RFFs from raw received signals. The proposed framework comprises a novel preprocessing module, called neural synchronization~(NS), which incorporates the data-driven learning with signal processing priors as an inductive bias from communication-model based processing. Compared to traditional carrier synchronization techniques, which are static, this module estimates offsets by two learnable deep neural networks jointly trained by the RFF extractor. Additionally, a hypersphere representation is proposed to further improve the discrimination of RFF. Theoretical analysis shows that such a data-and-model framework can better optimize the mutual information between device identity and the RFF, which naturally leads to better performance. Experimental results verify that the proposed RFF significantly outperforms purely data-driven DNN-design and existing handcrafted RFF methods in terms of both discrimination and network generalizability.
In this work, we proceed to study the $CP$ asymmetry in the angular distributions of $tauto K_Spi u_tau$ decays within a general effective field theory framework including four-fermion operators up to dimension-six. It is found that, besides the comm only considered scalar-vector interference, the tensor-scalar interference can also produce a nonzero $CP$ asymmetry in the angular distributions, in the presence of complex couplings. Using the dispersive representations of the $Kpi$ form factors as inputs, and taking into account the detector efficiencies of the Belle measurement, we firstly update our previous SM predictions for the $CP$ asymmetries in the same four $Kpi$ invariant-mass bins as set by the Belle collaboration. Bounds on the effective couplings of the nonstandard scalar and tensor interactions are then obtained under the combined constraints from the $CP$ asymmetries measured in the four bins and the branching ratio of $tau^-to K_Spi^- u_tau$ decay, with the numerical results given respectively by $mathrm{Im}[hat{epsilon}_S]=-0.008pm0.027$ and $mathrm{Im}[hat{epsilon}_T]=0.03pm0.12$, at the renormalization scale $mu=2~mathrm{GeV}$ in the $mathrm{overline{MS}}$ scheme. Using these best-fit values, we also find that the distributions of the $CP$ asymmetries can deviate significantly from the SM prediction in almost the whole $Kpi$ invariant-mass regions. The current bounds are still plagued by large experimental uncertainties, but will be improved with more precise measurements from the Belle II experiment as well as the proposed Tera-Z and STCF facilities.
Modulation recognition is an important task in radio signal processing. Most of the current researches focus on supervised learning. However, in many real scenarios, it is difficult and cost to obtain the labels of signals. In this letter, we turn to the more challenging problem: can we cluster the modulation types just based on a large number of unlabeled radio signals? If this problem can be solved, we then can also recognize modulation types by manually labeling a very small number of samples. To answer this problem, we propose a deep transfer clustering (DTC) model. DTC naturally integrates feature learning and deep clustering, and further adopts a transfer learning mechanism to improve the feature extraction ability of an embedded convolutional neural network (CNN) model. The experiments validate that our DTC significantly outperforms a number of baselines, achieving the state-of-the-art performance in clustering radio signals for modulation recognition.
In Artificial Intelligence, interpreting the results of a Machine Learning technique often termed as a black box is a difficult task. A counterfactual explanation of a particular black box attempts to find the smallest change to the input values that modifies the prediction to a particular output, other than the original one. In this work we formulate the problem of finding a counterfactual explanation as an optimization problem. We propose a new sparsity algorithm which solves the optimization problem, while also maximizing the sparsity of the counterfactual explanation. We apply the sparsity algorithm to provide a simple suggestion to publicly traded companies in order to improve their credit ratings. We validate the sparsity algorithm with a synthetically generated dataset and we further apply it to quarterly financial statements from companies in financial, healthcare and IT sectors of the US market. We provide evidence that the counterfactual explanation can capture the nature of the real statement features that changed between the current quarter and the following quarter when ratings improved. The empirical results show that the higher the rating of a company the greater the effort required to further improve credit rating.
With the development of deep encoder-decoder architectures and large-scale annotated medical datasets, great progress has been achieved in the development of automatic medical image segmentation. Due to the stacking of convolution layers and the cons ecutive sampling operations, existing standard models inevitably encounter the information recession problem of feature representations, which fails to fully model the global contextual feature dependencies. To overcome the above challenges, this paper proposes a novel Transformer based medical image semantic segmentation framework called TransAttUnet, in which the multi-level guided attention and multi-scale skip connection are jointly designed to effectively enhance the functionality and flexibility of traditional U-shaped architecture. Inspired by Transformer, a novel self-aware attention (SAA) module with both Transformer Self Attention (TSA) and Global Spatial Attention (GSA) is incorporated into TransAttUnet to effectively learn the non-local interactions between encoder features. In particular, we also establish additional multi-scale skip connections between decoder blocks to aggregate the different semantic-scale upsampling features. In this way, the representation ability of multi-scale context information is strengthened to generate discriminative features. Benefitting from these complementary components, the proposed TransAttUnet can effectively alleviate the loss of fine details caused by the information recession problem, improving the diagnostic sensitivity and segmentation quality of medical image analysis. Extensive experiments on multiple medical image segmentation datasets of different imaging demonstrate that our method consistently outperforms the state-of-the-art baselines.
90 - Zhi Chen , Yadan Luo , Sen Wang 2021
Generalized Zero-Shot Learning (GZSL) is the task of leveraging semantic information (e.g., attributes) to recognize the seen and unseen samples, where unseen classes are not observable during training. It is natural to derive generative models and h allucinate training samples for unseen classes based on the knowledge learned from the seen samples. However, most of these models suffer from the `generation shifts, where the synthesized samples may drift from the real distribution of unseen data. In this paper, we conduct an in-depth analysis on this issue and propose a novel Generation Shifts Mitigating Flow (GSMFlow) framework, which is comprised of multiple conditional affine coupling layers for learning unseen data synthesis efficiently and effectively. In particular, we identify three potential problems that trigger the generation shifts, i.e., semantic inconsistency, variance decay, and structural permutation and address them respectively. First, to reinforce the correlations between the generated samples and the respective attributes, we explicitly embed the semantic information into the transformations in each of the coupling layers. Second, to recover the intrinsic variance of the synthesized unseen features, we introduce a visual perturbation strategy to diversify the intra-class variance of generated data and hereby help adjust the decision boundary of the classifier. Third, to avoid structural permutation in the semantic space, we propose a relative positioning strategy to manipulate the attribute embeddings, guiding which to fully preserve the inter-class geometric structure. Experimental results demonstrate that GSMFlow achieves state-of-the-art recognition performance in both conventional and generalized zero-shot settings. Our code is available at: https://github.com/uqzhichen/GSMFlow
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا