ترغب بنشر مسار تعليمي؟ اضغط هنا

60 - Zhenwu Shi , Ningshi Yao , 2016
This paper studies the operation and scheduling of electric loads in micro-grid, a highly automated and distributed cyber-physical energy system (CPES). We establish rigorous mathematical expressions for electric loads and battery banks in the micro- grid by considering their characteristics and constraints. Based on these mathematical models, we propose a novel real-time scheduling analysis method for priority-based energy management in micro-grid, named Significant Moments Analysis (SMA). SMA pinpoints all the crucial moments when electrical operations are requested among the micro-grid and establishes a dynamic model to describe the scheduling behavior of electric loads. Using SMA, we can check the scheduling feasibility and predict whether the micro-grid can generate enough power to support the execution of electric loads. In the case where the power is insufficient to supply load demands, SMA can provide accurate information about the amount of insufficient power and the time when the insufficiency happens. Simulated results are presented to show the effectiveness of the proposed analysis method.
207 - Zhenwu Shi , Fumin Zhang 2015
When multiple model predictive controllers are implemented on a shared control area network (CAN), their performance may degrade due to the inhomogeneous timing and delays among messages. The priority based real-time scheduling of messages on the CAN introduces complex timing of events, especially when the types and number of messages change at runtime. This paper introduces a novel hybrid timing model to make runtime predictions on the timing of the messages for a finite time window. Controllers can be designed using the optimization algorithms for model predictive control by considering the timing as optimization constraints. This timing model allows multiple controllers to share a CAN without significant degradation in the controller performance. The timing model also provides a convenient way to check the schedulability of messages on the CAN at runtime. Simulation results demonstrate that the timing model is accurate and computationally efficient to meet the needs of real-time implementation. Simulation results also demonstrate that model predictive controllers designed when considering the timing constraints have superior performance than the controllers designed without considering the timing constraints.
228 - Fumin Zhang , Zhenwu Shi , 2011
This paper establishes a novel analytical approach to quantify robustness of scheduling and battery management for battery supported cyber-physical systems. A dynamic schedulability test is introduced to determine whether tasks are schedulable within a finite time window. The test is used to measure robustness of a real-time scheduling algorithm by evaluating the strength of computing time perturbations that break schedulability at runtime. Robustness of battery management is quantified analytically by an adaptive threshold on the state of charge. The adaptive threshold significantly reduces the false alarm rate for battery management algorithms to decide when a battery needs to be replaced.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا