ترغب بنشر مسار تعليمي؟ اضغط هنا

For strictly ergodic systems, we introduce the class of CF-Nil($k$) systems: systems for which the maximal measurable and maximal topological $k$-step pronilfactors coincide as measure-preserving systems. Weiss theorem implies that such systems are a bundant in a precise sense. We show that the CF-Nil($k$) systems are precisely the class of minimal systems for which the $k$-step nilsequence version of the Wiener-Wintner average converges everywhere. As part of the proof we establish that pronilsystems are $coalescent$. In addition, we characterize a CF-Nil($k$) system in terms of its $(k+1)$-$th dynamical cubespace$. In particular, for $k=1$, this provides for strictly ergodic systems a new condition equivalent to the property that every measurable eigenfunction has a continuous version.
356 - Zhengxing Lian , Jiahao Qiu 2020
For a topological dynamical system $(X, T)$, $linmathbb{N}$ and $xin X$, let $N_l(X)$ and $L_x^l(X)$ be the orbit closures of the diagonal point $(x,x,ldots,x)$ ($l $ times) under the actions $mathcal{G}_{l}$ and $tau_l $ respectively, where $mathcal {G}_{l}$ is generated by $Ttimes Ttimes ldots times T$ ($l $ times) and $tau_l=Ttimes T^2times ldots times T^l$. In this paper, we show that for a minimal system $(X,T)$ and $lin mathbb{N}$, the maximal $d$-step pro-nilfactor of $(N_l(X),mathcal{G}_{l})$ is $(N_l(X_d),mathcal{G}_{l})$, where $pi_d:Xto X/mathbf{RP}^{[d]}=X_d,din mathbb{N}$ is the factor map and $mathbf{RP}^{[d]}$ is the regionally proximal relation of order $d$. Meanwhile, when $(X,T)$ is a minimal nilsystem, we also calculate the pro-nilfactors of $(L_x^l(X),tau_l)$ for almost every $x$ w.r.t. the Haar measure. In particular, there exists a minimal $2$-step nilsystem $(Y,T)$ and a countable set $Omegasubset Y$ such that for $yin Ybackslash Omega$ the maximal equicontinuous factor of $(L_y^2(Y),tau_2)$ is not $(L_{pi_1(y)}^2(Y_{1}),tau_2)$.
122 - Zhengxing Lian , Ruxi Shi 2020
We construct the counter-example for polynomial version of Sarnaks conjecture for minimal systems, which assets that the Mobius function is linearly disjoint from subsequences along polynomials of deterministic sequences realized in minimal systems. Our example is in the class of Toeplitz systems, which are minimal.
In this paper it is proved that if a minimal system has the property that its sequence entropy is uniformly bounded for all sequences, then it has only finitely many ergodic measures and is an almost finite to one extension of its maximal equicontinu ous factor. This result is obtained as an application of a general criteria which states that if a minimal system is an almost finite to one extension of its maximal equicontinuous factor and has no infinite independent sets of length $k$ for some $kge 2$, then it has only finitely many ergodic measures.
Cocycles are a key object in Antol{i}n Camarena and Szegedys (topological) theory of nilspaces. We introduce measurable counterparts, named nilcycles, enabling us to give conditions which guarantee that an ergodic group extension of a strictly ergodi c distal system admits a strictly ergodic distal topological model, revisiting a problem studied by Lindenstrauss. In particular we show that if the base space is a dynamical nilspace then a dynamical nilspace topological model may be chosen for the extension. This approach combined with a structure theorem of Gutman, Manners and Varj{u} applied to the ergodic group extensions between successive Host-Kra characteristic factors gives a new proof that these factors are inverse limit of nilsystems.
In this paper, we show that for any sequence ${bf a}=(a_n)_{nin Z}in {1,ldots,k}^mathbb{Z}$ and any $epsilon>0$, there exists a Toeplitz sequence ${bf b}=(b_n)_{nin Z}in {1,ldots,k}^mathbb{Z}$ such that the entropy $h({bf b})leq 2 h({bf a})$ and $lim _{Ntoinfty}frac{1}{2N+1}sum_{n=-N}^N|a_n-b_n|<epsilon$. As an application of this result, we reduce Sarnak Conjecture to Toeplitz systems, that is, if the M{o}bius function is disjoint from any Toeplitz sequence with zero entropy, then the Sarnak conjecture holds.
84 - Zhengxing Lian 2015
In this paper, we study affine transformations on tori, nilmanifolds and compact abelian groups. For these systems, we show that an equivalent condition for zero entropy is the orbit closure of each point has a nice structure. To be precise, the affi ne systems on those spaces are zero entropy if and only if the orbit closure of each point is isomorphic to an inverse limit of nilsystems.
In this paper we study $C^*$-algebra version of Sarnak Conjecture for noncommutative toral automorphisms. Let $A_Theta$ be a noncommutative torus and $alpha_Theta$ be the noncommutative toral automorphism arising from a matrix $Sin GL(d,mathbb{Z})$. We show that if the Voiculescu-Brown entropy of $alpha_{Theta}$ is zero, then the sequence ${rho(alpha_{Theta}^nu)}_{nin mathbb{Z}}$ is a sum of a nilsequence and a zero-density-sequence, where $uin A_Theta$ and $rho$ is any state on $A_Theta$. Then by a result of Green and Tao, this sequence is linearly disjoint from the Mobius function.
In this paper it is shown that every non-periodic ergodic system has two topologically weakly mixing, fully supported models: one is non-minimal but has a dense set of minimal points; and the other one is proximal. Also for independent interests, for a given Kakutani-Rokhlin tower with relatively prime column heights, it is demonstrated how to get a new taller Kakutani-Rokhlin tower with same property, which can be used in Weisss proof of the Jewett-Kriegers theorem and the proofs of our theorems. Applications of the results are given.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا