ﻻ يوجد ملخص باللغة العربية
In this paper we study $C^*$-algebra version of Sarnak Conjecture for noncommutative toral automorphisms. Let $A_Theta$ be a noncommutative torus and $alpha_Theta$ be the noncommutative toral automorphism arising from a matrix $Sin GL(d,mathbb{Z})$. We show that if the Voiculescu-Brown entropy of $alpha_{Theta}$ is zero, then the sequence ${rho(alpha_{Theta}^nu)}_{nin mathbb{Z}}$ is a sum of a nilsequence and a zero-density-sequence, where $uin A_Theta$ and $rho$ is any state on $A_Theta$. Then by a result of Green and Tao, this sequence is linearly disjoint from the Mobius function.
We introduce a notion of noncommutative Choquet simplex, or briefly an nc simplex, that generalizes the classical notion of a simplex. While every simplex is an nc simplex, there are many more nc simplices. They arise naturally from C*-algebras and i
A C*-dynamical system is said to have the ideal separation property if every ideal in the corresponding crossed product arises from an invariant ideal in the C*-algebra. In this paper we characterize this property for unital C*-dynamical systems over
We show in prime dimension that for two non-commuting totally irreducible toral automorphisms the set of points that equidistribute under the first map but have non-dense orbit under the second has full Hausdorff dimension. In non-prime dimension the
In this paper, we reduce the logarithmic Sarnak conjecture to the ${0,1}$-symbolic systems with polynomial mean complexity. By showing that the logarithmic Sarnak conjecture holds for any topologically dynamical system with sublinear complexity, we p
We provide a systematic study of a noncommutative extension of the classical Anzai skew-product for the cartesian product of two copies of the unit circle to the noncommutative 2-tori. In particular, some relevant ergodic properties are proved for th