ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper addresses the problem of face video inpainting. Existing video inpainting methods target primarily at natural scenes with repetitive patterns. They do not make use of any prior knowledge of the face to help retrieve correspondences for the corrupted face. They therefore only achieve sub-optimal results, particularly for faces under large pose and expression variations where face components appear very differently across frames. In this paper, we propose a two-stage deep learning method for face video inpainting. We employ 3DMM as our 3D face prior to transform a face between the image space and the UV (texture) space. In Stage I, we perform face inpainting in the UV space. This helps to largely remove the influence of face poses and expressions and makes the learning task much easier with well aligned face features. We introduce a frame-wise attention module to fully exploit correspondences in neighboring frames to assist the inpainting task. In Stage II, we transform the inpainted face regions back to the image space and perform face video refinement that inpaints any background regions not covered in Stage I and also refines the inpainted face regions. Extensive experiments have been carried out which show our method can significantly outperform methods based merely on 2D information, especially for faces under large pose and expression variations.
We study the problem of dynamic visual reasoning on raw videos. This is a challenging problem; currently, state-of-the-art models often require dense supervision on physical object properties and events from simulation, which are impractical to obtai n in real life. In this paper, we present the Dynamic Concept Learner (DCL), a unified framework that grounds physical objects and events from video and language. DCL first adopts a trajectory extractor to track each object over time and to represent it as a latent, object-centric feature vector. Building upon this object-centric representation, DCL learns to approximate the dynamic interaction among objects using graph networks. DCL further incorporates a semantic parser to parse questions into semantic programs and, finally, a program executor to run the program to answer the question, levering the learned dynamics model. After training, DCL can detect and associate objects across the frames, ground visual properties, and physical events, understand the causal relationship between events, make future and counterfactual predictions, and leverage these extracted presentations for answering queries. DCL achieves state-of-the-art performance on CLEVRER, a challenging causal video reasoning dataset, even without using ground-truth attributes and collision labels from simulations for training. We further test DCL on a newly proposed video-retrieval and event localization dataset derived from CLEVRER, showing its strong generalization capacity.
Weakly-supervised Temporal Action Localization (WTAL) aims to detect the action segments with only video-level action labels in training. The key challenge is how to distinguish the action of interest segments from the background, which is unlabelled even on the video-level. While previous works treat the background as curses, we consider it as blessings. Specifically, we first use causal analysis to point out that the common localization errors are due to the unobserved confounder that resides ubiquitously in visual recognition. Then, we propose a Temporal Smoothing PCA-based (TS-PCA) deconfounder, which exploits the unlabelled background to model an observed substitute for the unobserved confounder, to remove the confounding effect. Note that the proposed deconfounder is model-agnostic and non-intrusive, and hence can be applied in any WTAL method without model re-designs. Through extensive experiments on four state-of-the-art WTAL methods, we show that the deconfounder can improve all of them on the public datasets: THUMOS-14 and ActivityNet-1.3.
118 - Zhenfang Chen , Peng Wang , Lin Ma 2020
Referring expression comprehension (REF) aims at identifying a particular object in a scene by a natural language expression. It requires joint reasoning over the textual and visual domains to solve the problem. Some popular referring expression data sets, however, fail to provide an ideal test bed for evaluating the reasoning ability of the models, mainly because 1) their expressions typically describe only some simple distinctive properties of the object and 2) their images contain limited distracting information. To bridge the gap, we propose a new dataset for visual reasoning in context of referring expression comprehension with two main features. First, we design a novel expression engine rendering various reasoning logics that can be flexibly combined with rich visual properties to generate expressions with varying compositionality. Second, to better exploit the full reasoning chain embodied in an expression, we propose a new test setting by adding additional distracting images containing objects sharing similar properties with the referent, thus minimising the success rate of reasoning-free cross-domain alignment. We evaluate several state-of-the-art REF models, but find none of them can achieve promising performance. A proposed modular hard mining strategy performs the best but still leaves substantial room for improvement. We hope this new dataset and task can serve as a benchmark for deeper visual reasoning analysis and foster the research on referring expression comprehension.
In this paper, we study the problem of weakly-supervised temporal grounding of sentence in video. Specifically, given an untrimmed video and a query sentence, our goal is to localize a temporal segment in the video that semantically corresponds to th e query sentence, with no reliance on any temporal annotation during training. We propose a two-stage model to tackle this problem in a coarse-to-fine manner. In the coarse stage, we first generate a set of fixed-length temporal proposals using multi-scale sliding windows, and match their visual features against the sentence features to identify the best-matched proposal as a coarse grounding result. In the fine stage, we perform a fine-grained matching between the visual features of the frames in the best-matched proposal and the sentence features to locate the precise frame boundary of the fine grounding result. Comprehensive experiments on the ActivityNet Captions dataset and the Charades-STA dataset demonstrate that our two-stage model achieves compelling performance.
In this paper, we address a novel task, namely weakly-supervised spatio-temporally grounding natural sentence in video. Specifically, given a natural sentence and a video, we localize a spatio-temporal tube in the video that semantically corresponds to the given sentence, with no reliance on any spatio-temporal annotations during training. First, a set of spatio-temporal tubes, referred to as instances, are extracted from the video. We then encode these instances and the sentence using our proposed attentive interactor which can exploit their fine-grained relationships to characterize their matching behaviors. Besides a ranking loss, a novel diversity loss is introduced to train the proposed attentive interactor to strengthen the matching behaviors of reliable instance-sentence pairs and penalize the unreliable ones. Moreover, we also contribute a dataset, called VID-sentence, based on the ImageNet video object detection dataset, to serve as a benchmark for our task. Extensive experimental results demonstrate the superiority of our model over the baseline approaches.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا