ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-task learning can leverage information learned by one task to benefit the training of other tasks. Despite this capacity, naively training all tasks together in one model often degrades performance, and exhaustively searching through combinatio ns of task groupings can be prohibitively expensive. As a result, efficiently identifying the tasks that would benefit from co-training remains a challenging design question without a clear solution. In this paper, we suggest an approach to select which tasks should train together in multi-task learning models. Our method determines task groupings in a single training run by co-training all tasks together and quantifying the effect to which one tasks gradient would affect another tasks loss. On the large-scale Taskonomy computer vision dataset, we find this method can decrease test loss by 10.0% compared to simply training all tasks together while operating 11.6 times faster than a state-of-the-art task grouping method.
106 - Guangke Chen , Zhe Zhao , Fu Song 2021
Adversarial attacks have been expanded to speaker recognition (SR). However, existing attacks are often assessed using different SR models, recognition tasks and datasets, and only few adversarial defenses borrowed from computer vision are considered . Yet,these defenses have not been thoroughly evaluated against adaptive attacks. Thus, there is still a lack of quantitative understanding about the strengths and limitations of adversarial attacks and defenses. More effective defenses are also required for securing SR systems. To bridge this gap, we present SEC4SR, the first platform enabling researchers to systematically and comprehensively evaluate adversarial attacks and defenses in SR. SEC4SR incorporates 4 white-box and 2 black-box attacks, 24 defenses including our novel feature-level transformations. It also contains techniques for mounting adaptive attacks. Using SEC4SR, we conduct thus far the largest-scale empirical study on adversarial attacks and defenses in SR, involving 23 defenses, 15 attacks and 4 attack settings. Our study provides lots of useful findings that may advance future research: such as (1) all the transformations slightly degrade accuracy on benign examples and their effectiveness vary with attacks; (2) most transformations become less effective under adaptive attacks, but some transformations become more effective; (3) few transformations combined with adversarial training yield stronger defenses over some but not all attacks, while our feature-level transformation combined with adversarial training yields the strongest defense over all the attacks. Extensive experiments demonstrate capabilities and advantages of SEC4SR which can benefit future research in SR.
The Mixture-of-experts (MoE) architecture is showing promising results in multi-task learning (MTL) and in scaling high-capacity neural networks. State-of-the-art MoE models use a trainable sparse gate to select a subset of the experts for each input example. While conceptually appealing, existing sparse gates, such as Top-k, are not smooth. The lack of smoothness can lead to convergence and statistical performance issues when training with gradient-based methods. In this paper, we develop DSelect-k: the first, continuously differentiable and sparse gate for MoE, based on a novel binary encoding formulation. Our gate can be trained using first-order methods, such as stochastic gradient descent, and offers explicit control over the number of experts to select. We demonstrate the effectiveness of DSelect-k in the context of MTL, on both synthetic and real datasets with up to 128 tasks. Our experiments indicate that MoE models based on DSelect-k can achieve statistically significant improvements in predictive and expert selection performance. Notably, on a real-world large-scale recommender system, DSelect-k achieves over 22% average improvement in predictive performance compared to the Top-k gate. We provide an open-source TensorFlow implementation of our gate.
169 - Kun Wang , Canzhe Zhao , Shuai Li 2021
Conservative mechanism is a desirable property in decision-making problems which balance the tradeoff between the exploration and exploitation. We propose the novel emph{conservative contextual combinatorial cascading bandit ($C^4$-bandit)}, a cascad ing online learning game which incorporates the conservative mechanism. At each time step, the learning agent is given some contexts and has to recommend a list of items but not worse than the base strategy and then observes the reward by some stopping rules. We design the $C^4$-UCB algorithm to solve the problem and prove its n-step upper regret bound for two situations: known baseline reward and unknown baseline reward. The regret in both situations can be decomposed into two terms: (a) the upper bound for the general contextual combinatorial cascading bandit; and (b) a constant term for the regret from the conservative mechanism. We also improve the bound of the conservative contextual combinatorial bandit as a by-product. Experiments on synthetic data demonstrate its advantages and validate our theoretical analysis.
As a new programming paradigm, deep learning has expanded its application to many real-world problems. At the same time, deep learning based software are found to be vulnerable to adversarial attacks. Though various defense mechanisms have been propo sed to improve robustness of deep learning software, many of them are ineffective against adaptive attacks. In this work, we propose a novel characterization to distinguish adversarial examples from benign ones based on the observation that adversarial examples are significantly less robust than benign ones. As existing robustness measurement does not scale to large networks, we propose a novel defense framework, named attack as defense (A2D), to detect adversarial examples by effectively evaluating an examples robustness. A2D uses the cost of attacking an input for robustness evaluation and identifies those less robust examples as adversarial since less robust examples are easier to attack. Extensive experiment results on MNIST, CIFAR10 and ImageNet show that A2D is more effective than recent promising approaches. We also evaluate our defence against potential adaptive attacks and show that A2D is effective in defending carefully designed adaptive attacks, e.g., the attack success rate drops to 0% on CIFAR10.
Verifying and explaining the behavior of neural networks is becoming increasingly important, especially when they are deployed in safety-critical applications. In this paper, we study verification problems for Binarized Neural Networks (BNNs), the 1- bit quantization of general real-numbered neural networks. Our approach is to encode BNNs into Binary Decision Diagrams (BDDs), which is done by exploiting the internal structure of the BNNs. In particular, we translate the input-output relation of blocks in BNNs to cardinality constraints which are then encoded by BDDs. Based on the encoding, we develop a quantitative verification framework for BNNs where precise and comprehensive analysis of BNNs can be performed. We demonstrate the application of our framework by providing quantitative robustness analysis and interpretability for BNNs. We implement a prototype tool BDD4BNN and carry out extensive experiments which confirm the effectiveness and efficiency of our approach.
Multi-task learning can leverage information learned by one task to benefit the training of other tasks. Despite this capacity, naive formulations often degrade performance and in particular, identifying the tasks that would benefit from co-training remains a challenging design question. In this paper, we analyze the dynamics of information transfer, or transference, across tasks throughout training. Specifically, we develop a similarity measure that can quantify transference among tasks and use this quantity to both better understand the optimization dynamics of multi-task learning as well as improve overall learning performance. In the latter case, we propose two methods to leverage our transference metric. The first operates at a macro-level by selecting which tasks should train together while the second functions at a micro-level by determining how to combine task gradients at each training step. We find these methods can lead to significant improvement over prior work on three supervised multi-task learning benchmarks and one multi-task reinforcement learning paradigm.
139 - Weijie Liu , Peng Zhou , Zhe Zhao 2020
Pre-trained language models like BERT have proven to be highly performant. However, they are often computationally expensive in many practical scenarios, for such heavy models can hardly be readily implemented with limited resources. To improve their efficiency with an assured model performance, we propose a novel speed-tunable FastBERT with adaptive inference time. The speed at inference can be flexibly adjusted under varying demands, while redundant calculation of samples is avoided. Moreover, this model adopts a unique self-distillation mechanism at fine-tuning, further enabling a greater computational efficacy with minimal loss in performance. Our model achieves promising results in twelve English and Chinese datasets. It is able to speed up by a wide range from 1 to 12 times than BERT if given different speedup thresholds to make a speed-performance tradeoff.
Knowledge Distillation (KD) is a model-agnostic technique to improve model quality while having a fixed capacity budget. It is a commonly used technique for model compression, where a larger capacity teacher model with better quality is used to train a more compact student model with better inference efficiency. Through distillation, one hopes to benefit from students compactness, without sacrificing too much on model quality. Despite the large success of knowledge distillation, better understanding of how it benefits student models training dynamics remains under-explored. In this paper, we categorize teachers knowledge into three hierarchical levels and study its effects on knowledge distillation: (1) knowledge of the `universe, where KD brings a regularization effect through label smoothing; (2) domain knowledge, where teacher injects class relationships prior to students logit layer geometry; and (3) instance specific knowledge, where teacher rescales student models per-instance gradients based on its measurement on the event difficulty. Using systematic analyses and extensive empirical studies on both synthetic and real-world datasets, we confirm that the aforementioned three factors play a major role in knowledge distillation. Furthermore, based on our findings, we diagnose some of the failure cases of applying KD from recent studies.
Mixed precision training (MPT) is becoming a practical technique to improve the speed and energy efficiency of training deep neural networks by leveraging the fast hardware support for IEEE half-precision floating point that is available in existing GPUs. MPT is typically used in combination with a technique called loss scaling, that works by scaling up the loss value up before the start of backpropagation in order to minimize the impact of numerical underflow on training. Unfortunately, existing methods make this loss scale value a hyperparameter that needs to be tuned per-model, and a single scale cannot be adapted to different layers at different training stages. We introduce a loss scaling-based training method called adaptive loss scaling that makes MPT easier and more practical to use, by removing the need to tune a model-specific loss scale hyperparameter. We achieve this by introducing layer-wise loss scale values which are automatically computed during training to deal with underflow more effectively than existing methods. We present experimental results on a variety of networks and tasks that show our approach can shorten the time to convergence and improve accuracy compared to the existing state-of-the-art MPT and single-precision floating point
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا