ترغب بنشر مسار تعليمي؟ اضغط هنا

Principal component analysis has been widely adopted to reduce the dimension of data while preserving the information. The quantum version of PCA (qPCA) can be used to analyze an unknown low-rank density matrix by rapidly revealing the principal comp onents of it, i.e. the eigenvectors of the density matrix with largest eigenvalues. However, due to the substantial resource requirement, its experimental implementation remains challenging. Here, we develop a resonant analysis algorithm with the minimal resource for ancillary qubits, in which only one frequency scanning probe qubit is required to extract the principal components. In the experiment, we demonstrate the distillation of the first principal component of a 4$times$4 density matrix, with the efficiency of 86.0% and fidelity of 0.90. This work shows the speed-up ability of quantum algorithm in dimension reduction of data and thus could be used as part of quantum artificial intelligence algorithms in the future.
It is difficult to calculate the energy levels and eigenstates of a large physical system on a classical computer because of the exponentially growing size of the Hilbert space. In this work, we experimentally demonstrate a quantum algorithm which co uld solve this problem via simulated resonant transitions. Using a four-qubit quantum simulator in which two qubits are used as ancillas for control and measurement, we obtain the energy spectrum of a 2-qubit low-energy effective Hamiltonian of the water molecule. The simulated transitions allow the state of the quantum simulator to transform and access large regions of the Hilbert space, including states that have no overlap with the initial state. Furthermore, we make use of this algorithm to efficiently prepare specific eigenstates on the simulator according to the measured eigenenergies.
In previous implementations of adiabatic quantum algorithms using spin systems, the average Hamiltonian method with Trotters formula was conventionally adopted to generate an effective instantaneous Hamiltonian that simulates an adiabatic passage. Ho wever, this approach had issues with the precision of the effective Hamiltonian and with the adiabaticity of the evolution. In order to address these, we here propose and experimentally demonstrate a novel scheme for adiabatic quantum computation by using the intrinsic Hamiltonian of a realistic spin system to represent the problem Hamiltonian while adiabatically driving the system by an extrinsic Hamiltonian directly induced by electromagnetic pulses. In comparison to the conventional method, we observed two advantages of our approach: improved ease of implementation and higher fidelity. As a showcase example of our approach, we experimentally factor 291311, which is larger than any other quantum factorization known.
108 - Zhihuang Luo , Jun Li , Zhaokai Li 2016
The modern conception of phases of matter has undergone tremendous developments since the first observation of topologically ordered states in fractional quantum Hall systems in the 1980s. In this paper, we explore the question: How much detail of th e physics of topological orders can in principle be observed using state of the art technologies? We find that using surprisingly little data, namely the toric code Hamiltonian in the presence of generic disorders and detuning from its exactly solvable point, the modular matrices -- characterizing anyonic statistics that are some of the most fundamental finger prints of topological orders -- can be reconstructed with very good accuracy solely by experimental means. This is a first experimental realization of these fundamental signatures of a topological order, a test of their robustness against perturbations, and a proof of principle -- that current technologies have attained the precision to identify phases of matter and, as such, probe an extended region of phase space around the soluble point before its breakdown. Given the special role of anyonic statistics in quantum computation, our work promises myriad applications both in probing and realistically harnessing these exotic phases of matter.
103 - Zhihuang Luo , Jun Li , Zhaokai Li 2016
Topological orders are a class of exotic states of matter characterized by patterns of long-range entanglement. Certain topologically ordered systems are proposed as potential realization of fault-tolerant quantum computation. Topological orders can arise in two-dimensional spin-lattice models. In this paper, we engineer a time-dependent Hamiltonian to prepare a topologically ordered state through adiabatic evolution. The other sectors in the degenerate ground-state space of the model are obtained by applying nontrivial operations corresponding to closed string operators. Each sector is highly entangled, as shown from the completely reconstructed density matrices. This paves the way towards exploring the properties of topological orders and the application of topological orders in topological quantum memory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا