ترغب بنشر مسار تعليمي؟ اضغط هنا

We present renormalization constants of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations. This setup is being used by the chiQCD collaboration in calculations of physical quantities such as strangeness in the nucleon and the strange and charm quark masses. The scale independent renormalization constant for the axial vector current is computed using the Ward Identity. The renormalization constants for scalar, pseudoscalar and vector current are calculated in the RI-MOM scheme. Results in the MS-bar scheme are also given. The step scaling function of quark masses in the RI-MOM scheme is computed as well. The analysis uses, in total, six different ensembles of three sea quarks each on two lattices with sizes 24^3x64 and 32^3x64 at spacings a=(1.73 GeV)^{-1} and (2.28 GeV)^{-1}, respectively.
We present renormalization constants of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations. Both overlap and domain wall fermions have chiral symmetry on the lattice. The scale independent renormalization constant for t he local axial vector current is computed using a Ward Identity. The renormalization constants for the scalar, pseudoscalar and vector current are calculated in the RI-MOM scheme. Results in the MS-bar scheme are obtained by using perturbative conversion ratios. The analysis uses in total six ensembles with lattice sizes 24^3x64 and 32^3x64.
Lattice QCD can contribute to the search for new physics in b -> s decays by providing first-principle calculations of B -> K(*) form factors. Preliminary results are presented here which complement sum rule determinations by being done at large q^2 and which improve upon previous lattice calculations by working directly in the physical b sector on unquenched gauge field configurations.
We investigate the combined use of moving NRQCD and stochastic sources in lattice calculations of form factors describing rare B and B_s decays. Moving NRQCD leads to a reduction of discretisation errors compared to standard NRQCD. Stochastic sources are tested for reduction of statistical errors.
We study the role of diquarks in light baryons through point to point baryon correlators. We contrast results from quenched simulations with ones with two flavors of dynamical overlap fermions. The scalar, pseudoscalar and axial vector diquarks are c ombined with light quarks to form color singlets. The quenched simulation shows large zero mode effects in correlators containing the scalar and pseudoscalar diquark. The two scalar diquarks created by gamma_5 and gamma_0gamma_5 lead to different behavior in baryon correlators, showing that the interaction of diquarks with the third light quark matters: we do not see an isolated diquark. In our quark mass range, the scalar diquark created by gamma_5 seems to play a greater role than the others.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا