ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce an entanglement entropy analysis to quantitatively identify the confinement and deconfinement of the spinons in the spin excitations of quantum magnets. Our proposal is implemented by the parton construction of a honeycomb-lattice antife rromagnet exhibiting high-energy anomalous spectra. To obtain the quasiparticles of spin excitations for entanglement entropy calculations, we develop an effective Hamiltonian using the random phase approximation. We elaborate quantitatively the deconfinement-to-confinement transition of spinons in the anomalous spectra with the increase of the Hubbard interaction, indicating the avoided fractionalization of magnons in the strong interaction regime. Meanwhile, the Higgs mode at the {Gamma}0 point is fractionalized into four degenerate spinon pairs, although it appears as a sharp well-defined peak in the spectra. Our work extends our understanding of the deconfinement of the spinon and its coexistence with the magnon in quantum magnets.
Topological magnons are bosonic analogues of topological fermions in electronic systems. They have been studied extensively by theory but rarely realized by experiment. Here, by performing inelastic neutron scattering measurements on single crystals of a two-dimensional ferromagnet CrBr$_3$, which was classified as Dirac magnon semimetal featured by the linear bands crossing at the Dirac points, we fully map out the magnetic excitation spectra, and reveal that there is an apparent gap of $sim$3.5~meV between the acoustic and optical branches of the magnons at the K point. By collaborative efforts between experiment and theoretical calculations using a five-orbital Hubbard model obtained from first-principles calculations to derive the exchange parameters, we find that a Hamiltonian with Heisenberg exchange interactions, next-nearest-neighbor Dzyaloshinskii-Moriya (DM) interaction, and single-ion anisotropy is more appropriate to describe the system. Calculations using the model show that the lower and upper magnon bands separated by the gap exhibit Chern numbers of $pm1$. These results indicate that CrBr$_3$ is a topological magnon insulator, where the nontrivial gap is a result of the DM interaction.
The elementary excitations from the conventional magnetic ordered states, such as ferromagnets and antiferromagnets, are magnons. Here, we elaborate a case where the well-defined magnons are absent completely and the spin excitation spectra exhibit a n entire continuum in the itinerant edge ferromagnetic state of graphene arising from the flatband edge electronic states. Based on the further studies of the entanglement entropy and finite-size analysis, we show that the continuum other than the Stoner part results from the spin-1/2 spinons deconfined from magnons. The spinon continuum in a magnetically ordered state is ascribed to a ferromagnetic Luttinger liquid in this edge ferromagnet. The investigation is carried out by using the numerical exact diagonalization method with a projection of the interacting Hamiltonian onto the flat band.
We elaborate the first theoretical realization of two dimensional itinerant topological magnons, based on the quarter filled Haldane-Hubbard model with a nearly-flat electron band. By using the exact diagonalization method with a projection onto this band, we obtain the spin wave excitations over the itinerant ferromagnetic ground state. In the flatband limit, the excitation exhibits similar dispersion to the free electron band with Dirac magnons. The nonflatness of the electron band opens a topological gap at Dirac points and leads to an acoustic magnon band with a nonzero Chern number. We further show that tuning the sublattice Hubbard interactions or the next-nearest-neighbor hopping can induce a topological transition characterized by the gap closing and reopening, and the existence of the in-gap magnons on magnetic domain walls. We find an exact set of bases for magnons in the flatband limit constructed from sublattice particle-hole vectors and derive an effective model to explore the origin of the topological magnon which is attributed to the ``mass inversion mechanism.
We study the spin-1 excitation spectra of the flatband ferromagnetic phases in interacting topological insulators. As a paradigm, we consider a quarter filled square lattice Hubbard model whose free part is the $pi$ flux state with topologically nont rivial and nearly-flat electron bands, which can realize either the Chern or $Z_2$ Hubbard model. By using the numerical exact diagonalization method with a projection onto the nearly-flat band, we obtain the ferromagnetic spin-1 excitation spectra for both the Chern and $Z_2$ Hubbard models, consisting of spin waves and Stoner continuum. The spectra exhibit quite distinct dispersions for both cases, in particular the spin wave is gapless for the Chern Hubbard model, while gapped for the $Z_2$ Hubbard model. Remarkably, in both cases, the nonflatness of the free electron bands introduces dips in the lower boundary of the Stoner continuum. It significantly renormalizes the energies of the spin waves around these dips downward and leads to roton-like spin excitations. We elaborate that it is the softening of the roton-like modes that destabilizes the ferromagnetic phase, and determine the parameter region where the ferromagnetic phase is stable.
Different from previous scenarios that topological magnons emerge in local spin models, we propose an alternative that itinerant electron magnets can host topological magnons. A one-dimensional Tasaki model with a flat band is considered as the proto type. This model can be viewed as a quarter filled periodic Anderson model with impurities located in between and hybridizing with the nearest-neighbor conducting electrons, together with a Hubbard repulsion for these electrons. By increasing the Hubbard interaction, the gap between the acoustic and optical magnons closes and reopens while the Berry phase of the acoustic band changes from 0 to $pi$, leading to the occurrence of a topological transition. After this transition, there always exist in-gap edge magnonic modes which is consistent with the bulk-edge correspondence. The Hubbard interaction driven transition reveals a new mechanism to realize non-trivial magnon bands.
We propose to utilize the sub-system fidelity (SSF), defined by comparing a pair of reduced density matrices derived from the degenerate ground states, to identify and/or characterize symmetry protected topological (SPT) states in one-dimensional int eracting many-body systems. The SSF tells whether two states are locally indistinguishable (LI) by measurements within a given sub-system. Starting from two polar states (states that could be distinguished on either edge), the other combinations of these states can be mapped onto a Bloch sphere. We prove that a pair of orthogonal states on the equator of the Bloch sphere are LI, independently of whether they are SPT states or cat states (symmetry-preserving states by linear combinations of states that break discrete symmetries). Armed with this theorem, we provide a scheme to construct zero-energy exitations that swap the LI states. We show that the zero mode can be located anywhere for cat states, but is localized near the edge for SPT states. We also show that the SPT states are LI in a finite fraction of the bulk (excluding the two edges), whereas the symmetry-breaking states are distinguishable. This can be used to pinpoint the transition from SPT states to the symmetry-breaking states.
We study the half-filled Hubbard model on the triangular lattice with spin-dependent Kitaev-like hopping. Using the variational cluster approach, we identify five phases: a metallic phase, a non-coplanar chiral magnetic order, a $120^circ$ magnetic o rder, a nonmagnetic insulator (NMI), and an interacting Chern insulator (CI) with a nonzero Chern number. The transition from CI to NMI is characterized by the change of the charge gap from an indirect band gap to a direct Mott gap. Based on the slave-rotor mean-field theory, the NMI phase is further suggested to be a gapless Mott insulator with a spinon Fermi surface or a fractionalized CI with nontrivial spinon topology, depending on the strength of Kitaev-like hopping. Our work highlights the rising field that interesting phases emerge from the interplay of band topology and Mott physics.
80 - Zhao-Long Gu , Kai Li , 2015
We detect the topological properties of Chern insulators with strong Coulomb interactions by use of cluster perturbation theory and variational cluster approach. The common scheme in previous studies only involves the calculation of the interacting b ulk Chern number within the natural unit cell by means of the so-called topological Hamiltonian. With close investigations on a prototype model, the half-filled Haldane Hubbard model, which is subject to both periodic and open boundary conditions, we uncover the unexpected failure of this scheme due to the explicit breaking of the translation symmetry. Instead, we assert that the faithful interacting bulk Chern number in the framework of quantum cluster approaches can be computed in the enlarged unit cell, which is free of the fault caused by the explicit translation symmetry breaking and consistent with the interacting bulk-edge correspondence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا