ترغب بنشر مسار تعليمي؟ اضغط هنا

357 - Zekun Li , Shu Wu , Zeyu Cui 2021
Factorization machine (FM) is a prevalent approach to modeling pairwise (second-order) feature interactions when dealing with high-dimensional sparse data. However, on the one hand, FM fails to capture higher-order feature interactions suffering from combinatorial expansion, on the other hand, taking into account interaction between every pair of features may introduce noise and degrade prediction accuracy. To solve the problems, we propose a novel approach Graph Factorization Machine (GraphFM) by naturally representing features in the graph structure. In particular, a novel mechanism is designed to select the beneficial feature interactions and formulate them as edges between features. Then our proposed model which integrates the interaction function of FM into the feature aggregation strategy of Graph Neural Network (GNN), can model arbitrary-order feature interactions on the graph-structured features by stacking layers. Experimental results on several real-world datasets has demonstrated the rationality and effectiveness of our proposed approach.
245 - Yinjiang Cai , Zeyu Cui , Shu Wu 2021
Item-based collaborative filtering (ICF) has been widely used in industrial applications such as recommender system and online advertising. It models users preference on target items by the items they have interacted with. Recent models use methods s uch as attention mechanism and deep neural network to learn the user representation and scoring function more accurately. However, despite their effectiveness, such models still overlook a problem that performance of ICF methods heavily depends on the quality of item representation especially the target item representation. In fact, due to the long-tail distribution in the recommendation, most item embeddings can not represent the semantics of items accurately and thus degrade the performance of current ICF methods. In this paper, we propose an enhanced representation of the target item which distills relevant information from the co-occurrence items. We design sampling strategies to sample fix number of co-occurrence items for the sake of noise reduction and computational cost. Considering the different importance of sampled items to the target item, we apply attention mechanism to selectively adopt the semantic information of the sampled items. Our proposed Co-occurrence based Enhanced Representation model (CER) learns the scoring function by a deep neural network with the attentive user representation and fusion of raw representation and enhanced representation of target item as input. With the enhanced representation, CER has stronger representation power for the tail items compared to the state-of-the-art ICF methods. Extensive experiments on two public benchmarks demonstrate the effectiveness of CER.
151 - Xueli Yu , Weizhi Xu , Zeyu Cui 2021
The ad-hoc retrieval task is to rank related documents given a query and a document collection. A series of deep learning based approaches have been proposed to solve such problem and gained lots of attention. However, we argue that they are inherent ly based on local word sequences, ignoring the subtle long-distance document-level word relationships. To solve the problem, we explicitly model the document-level word relationship through the graph structure, capturing the subtle information via graph neural networks. In addition, due to the complexity and scale of the document collections, it is considerable to explore the different grain-sized hierarchical matching signals at a more general level. Therefore, we propose a Graph-based Hierarchical Relevance Matching model (GHRM) for ad-hoc retrieval, by which we can capture the subtle and general hierarchical matching signals simultaneously. We validate the effects of GHRM over two representative ad-hoc retrieval benchmarks, the comprehensive experiments and results demonstrate its superiority over state-of-the-art methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا