ترغب بنشر مسار تعليمي؟ اضغط هنا

119 - Zehan Li , Sayan Choudhury , 2021
Spin ensembles coupled to optical cavities provide a powerful platform for engineering synthetic quantum matter. Recently, we demonstrated that cavity mediated infinite range interactions can induce fast scrambling in a Heisenberg $XXZ$ spin chain (P hys. Rev. Research {bf 2}, 043399 (2020)). In this work, we analyze the kaleidoscope of quantum phases that emerge in this system from the interplay of these interactions. Employing both analytical spin-wave theory as well as numerical DMRG calculations, we find that there is a large parameter regime where the continuous $U(1)$ symmetry of this model is spontaneously broken and the ground state of the system exhibits $XY$ order. This kind of symmetry breaking and the consequent long range order is forbidden for short range interacting systems by the Mermin-Wagner theorem. Intriguingly, we find that the $XY$ order can be induced by even an infinitesimally weak infinite range interaction. Furthermore, we demonstrate that in the $U(1)$ symmetry broken phase, the half chain entanglement entropy violates the area law logarithmically. Finally, we discuss a proposal to verify our predictions in state-of-the-art quantum emulators.
Motivated by the question of whether all fast scramblers are holographically dual to quantum gravity, we study the dynamics of a non-integrable spin chain model composed of two ingredients - a nearest neighbor Ising coupling, and an infinite range $X X$ interaction. Unlike other fast scrambling many-body systems, this model is not known to be dual to a black hole. We quantify the spreading of quantum information using an out-of time-ordered correlator (OTOC), and demonstrate that our model exhibits fast scrambling for a wide parameter regime. Simulation of its quench dynamics finds that the rapid decline of the OTOC is accompanied by a fast growth of the entanglement entropy, as well as a swift change in the magnetization. Finally, potential realizations of our model are proposed in current experimental setups. Our work establishes a promising route to create fast scramblers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا