ترغب بنشر مسار تعليمي؟ اضغط هنا

SN~2007D is a nearby (redshift $z = 0.023146$), luminous Type Ic supernova (SN) having a narrow light curve (LC) and high peak luminosity. Previous research based on the assumption that it was powered by the $^{56}$Ni cascade decay suggested that the inferred $^{56}$Ni mass and the ejecta mass are $sim 1.5$M$_{odot}$ and $sim 3.5$M$_{odot}$, respectively. In this paper, we employ some multiband LC models to model the $R$-band LC and the color ($V-R$) evolution of SN~2007D to investigate the possible energy sources powering them. We find that the pure $^{56}$Ni model is disfavored; the multiband LCs of SN~2007D can be reproduced by a magnetar whose initial rotational period $P_{0}$ and magnetic field strength $B_p$ are $7.28_{-0.21}^{+0.21}$ (or $9.00_{-0.42}^{+0.32}$) ms and $3.10_{-0.35}^{+0.36}times 10^{14}$ (or $2.81_{-0.44}^{+0.43}times 10^{14}$) G, respectively. By comparing the spectrum of SN~2007D with that of some superluminous SNe (SLSNe), we find that it might be a luminous SN like several luminous ``gap-filler optical transients that bridge ordinary and SLSNe, rather than a genuine SLSN.
286 - Zach Cano 2018
The aim of this work is to use gamma-ray burst supernovae (GRB-SNe) as cosmological probes to measure the Hubble constant, $H_0$, in the local Universe. In the context of the Expanding Photosphere Method (EPM), I use empirically derived dilution fact ors of a sample of nearby SNe Ic, which were derived in Paper I of a two-paper series, as a proxy for the dilution factors of GRB-SNe. It is seen that the dilution factors as a function of temperature in $VI$ display the least amount of scatter, relative to $BVI$ and $BV$. A power-law function is fit to the former, and is used to derive model dilution factors which are then used to derive EPM distances to GRB-SNe 1998bw and 2003lw: $36.7pm9.6$ and $372.2pm137.1$ Mpc, respectively. In linear Hubble diagrams in filters $BVR$, I determine the offset of the Hubble ridge line, and armed with the peak absolute magnitudes in these filters for the two aforementioned GRB-SNe, I find a (weighted average) Hubble constant of $bar{H_{0,rm w}} = 61.9pm12.3$ km s$^{-1}$ Mpc$^{-1}$ for GRB-SNe located at redshifts $zle0.1$. The 20% error is consistent with the value of $H_0$ calculated by Planck and SNe Ia within 1$sigma$. I tested the fitting method on five nearby SNe Ic, and found that their EPM distances varied by 18-50%, with smaller errors found for those SNe which had more numerous usable observations. For SN 2002ap, its EPM distance was overestimated by 18%, and if the distance to SN 1998bw was similarly over-estimated by the same amount, the resultant value of the Hubble constant is $H_0 = 72$ km s$^{-1}$ Mpc$^{-1}$, which perfectly matches that obtained using SNe Ia. [abridged]
181 - Zach Cano 2018
In this work, the empirically derived dilution/correct factors of a sample stripped-envelope, core-collapse supernovae (SE-SNe), including five SNe IIb, four SNe Ib, six SNe Ic and two relativistic broad-lined type Ic supernovae (SNe IcBL) are presen ted. The ultimate goal of this project is to derive model-free distances to the host galaxy of one or more gamma-ray burst supernova (GRB-SN), and to exploit their observed luminosity$-$decline relationship by employing them as cosmological probes. In the first part of a two-paper analysis, I present my method for deriving the dilution factors of the SE-SN sample, which were chosen on the basis that cosmological-model-independent distances exist to their host galaxies, and each has a sufficient dataset that allows for host-subtracted, dereddened rest-frame $BVI$ LCs to be constructed, and time-series spectra. A Planck function was fit to the data to derive the blackbody radius and blackbody temperature as a function of time, while the blueshifted velocity of either Si II $lambda$6355 or Fe II $lambda$5169 was used a proxy of the photospheric velocity, and hence photospheric radius. The ratio of these empirically derived radii was taken as the dilution/correct factor. I then compared the empirically derived dilution factors with synthetic values obtained from radiative transfer models calculated for SE-SNe arising from binary systems. It is seen that the empirical dilution factors of the SNe Ic and GRB-SNe, the latter which were derived based on luminosity distances calculated from their spectroscopic redshift, are very similar. It is found that the dilution factors of the two relativistic SN IcBL are very different to those of the GRB-SNe, meaning that these engine-driven events may arise from fundamentally different progenitor systems.
The spectacular success of type Ia supernovae (SNe Ia) in SN-cosmology is based on the assumption that their photometric and spectroscopic properties are invariant with redshift. However, this fundamental assumption needs to be tested with observatio ns of high-z SNe Ia. To date, the majority of SNe Ia observed at moderate to large redshifts (0.4 < z < 1.0) are faint, and the resultant analyses are based on observations with modest signal-to-noise ratios that impart a degree of ambiguity in their determined properties. In rare cases however, the Universe offers a helping hand: to date a few SNe Ia have been observed that have had their luminosities magnified by intervening galaxies and galaxy clusters acting as gravitational lenses. In this paper we present long-slit spectroscopy of the lensed SNe Ia 2016geu, which occurred at a redshift of z=0.409, and was magnified by a factor of ~55 by a galaxy located at z=0.216. We compared our spectra, which were obtained a couple weeks to a couple months past peak light, with the spectroscopic properties of well-observed, nearby SNe Ia, finding that SN 2016geus properties are commensurate with those of SNe Ia in the local universe. Based primarily on the velocity and strength of the Si II 6355 absorption feature, we find that SN 2016geu can be classified as a high-velocity, high-velocity gradient and core-normal SN Ia. The strength of various features (measured though their pseudo-equivalent widths) argue against SN 2016geu being a faint, broad-lined, cool or shallow-silicon SN Ia. We conclude that the spectroscopic properties of SN 2016geu imply that it is a normal SN Ia, and when taking previous results by other authors into consideration, there is very little, if any, evolution in the observational properties of SNe Ia up to z~0.4. [Abridged]
We study the most luminous known supernova (SN) associated with a gamma-ray burst (GRB), SN 2011kl. The photospheric velocity of SN 2011kl around peak brightness is $21,000pm7,000$ km s$^{-1}$. Owing to different assumptions related to the light-curv e (LC) evolution (broken or unbroken power-law function) of the optical afterglow of GRB 111209A, different techniques for the LC decomposition, and different methods (with or without a near-infrared contribution), three groups derived three different bolometric LCs for SN 2011kl. Previous studies have shown that the LCs without an early-time excess preferred a magnetar model, a magnetar+$^{56}$Ni model, or a white dwarf tidal disruption event model rather than the radioactive heating model. On the other hand, the LC shows an early-time excess and dip that cannot be reproduced by the aforementioned models, and hence the blue-supergiant model was proposed to explain it. Here we reinvestigate the energy sources powering SN 2011kl. We find that the two LCs without the early-time excess of SN 2011kl can be explained by the magnetar+$^{56}$Ni model, and the LC showing the early excess can be explained by the magnetar+$^{56}$Ni model taking into account the cooling emission from the shock-heated envelope of the SN progenitor, demonstrating that this SN might primarily be powered by a nascent magnetar.
Broad-lined type Ic supernovae (SNe Ic-BL) are a subclass of rare core collapse SNe whose energy source is debated in the literature. Recently a series of investigations on SNe Ic-BL with the magnetar (plus 56Ni) model were carried out. Evidence for magnetar formation was found for the well-observed SNe Ic-BL 1998bw and 2002ap. In this paper we systematically study a large sample of SNe Ic-BL not associated with gamma-ray bursts. We use photospheric velocity data determined in a homogeneous way. We find that the magnetar+56Ni model provides a good description of the light curves and velocity evolution of our sample of SNe Ic-BL, although some SNe (not all) can also be described by the pure-magnetar model or by the two-component pure-56Ni model (3 out of 12 are unlikely explained by two-component model). In the magnetar+56Ni model, the amount of 56Ni required to explain their luminosity is significantly reduced, and the derived initial explosion energy is, in general, in accordance with neutrino heating. Some correlations between different physical parameters are evaluated and their implications regarding magnetic field amplification and the total energy reservoir are discussed.
In this review we present a progress report of the connection between long-duration gamma-ray bursts (GRBs) and their accompanying supernovae (SNe). The analysis is from the point of view of an observer, with much of the emphasis placed on how observ ations, and the modelling of observations, have constrained what we known about GRB-SNe. We discuss their photometric and spectroscopic properties, their role as cosmological probes, including their measured luminosity$-$decline relationships, and how they can be used to measure the Hubble constant. We present a statistical analysis of their bolometric properties, and use this to determine the properties of the average GRB-SNe: which has a kinetic energy of $E_{rm K} approx 2.5times10^{52}$ erg, an ejecta mass of $M_{rm ej} approx 6$ M$_{odot}$, a nickel mass of $M_{rm Ni} approx 0.4$ M$_{odot}$, a peak photospheric velocity of $v_{rm ph} approx 21,000$ km s$^{-1}$, a peak bolometric luminosity of $L_{rm p} approx 1times10^{43}$ erg s$^{-1}$, and it reaches peak bolometric light in $t_{rm p} approx 13$ days. We discuss their geometry, consider the various physical processes that are thought to power the luminosity of GRB-SNe, and whether differences exist between GRB-SNe and the SNe associated with ultra-long duration GRBs. We discuss how observations of the environments of GRB-SNe further constrain the physical properties of their progenitor stars, and give an overview of the current theoretical paradigms of their suspected central engines. We also present an overview of the radioactively powered transients that have been photometrically associated with short-duration GRBs. We conclude the review by discussing what additional research is needed to further our understanding of GRB-SNe, in particular the role of binary-formation channels and the connection of GRB-SNe with superluminous SNe (abridged).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا