ترغب بنشر مسار تعليمي؟ اضغط هنا

A Monte Carlo approach to magnetar-powered transients: II. Broad-lined type Ic supernovae not associated with GRBs

67   0   0.0 ( 0 )
 نشر من قبل Ling-Jun Wang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Broad-lined type Ic supernovae (SNe Ic-BL) are a subclass of rare core collapse SNe whose energy source is debated in the literature. Recently a series of investigations on SNe Ic-BL with the magnetar (plus 56Ni) model were carried out. Evidence for magnetar formation was found for the well-observed SNe Ic-BL 1998bw and 2002ap. In this paper we systematically study a large sample of SNe Ic-BL not associated with gamma-ray bursts. We use photospheric velocity data determined in a homogeneous way. We find that the magnetar+56Ni model provides a good description of the light curves and velocity evolution of our sample of SNe Ic-BL, although some SNe (not all) can also be described by the pure-magnetar model or by the two-component pure-56Ni model (3 out of 12 are unlikely explained by two-component model). In the magnetar+56Ni model, the amount of 56Ni required to explain their luminosity is significantly reduced, and the derived initial explosion energy is, in general, in accordance with neutrino heating. Some correlations between different physical parameters are evaluated and their implications regarding magnetic field amplification and the total energy reservoir are discussed.

قيم البحث

اقرأ أيضاً

75 - Ke-Jung Chen 2017
Nascent neutron stars with millisecond periods and magnetic fields in excess of $10^{16}$ Gauss can drive highly energetic and asymmetric explosions known as magnetar-powered supernovae. These exotic explosions are one theoretical interpretation for supernovae Ic-BL which are sometimes associated with long gamma-ray bursts. Twisted magnetic field lines extract the rotational energy of the neutron star and release it as a disk wind or a jet with energies greater than 10$^{52}$ erg over $sim 20$ sec. What fractions of the energy of the central engine go into the wind and the jet remain unclear. We have performed two-dimensional hydrodynamical simulations of magnetar-powered supernovae (SNe) driven by disk winds and jets with the CASTRO code to investigate the effect of the central engine on nucleosynthetic yields, mixing, and light curves. We find that these explosions synthesize less than 0.05 Msun of Ni and that this mass is not very sensitive to central engine type. The morphology of the explosion can provide a powerful diagnostic of the properties of the central engine. In the absence of a circumstellar medium these events are not very luminous, with peak bolometric magnitudes $M_b sim -16.5 $ due to low Ni production.
A subset of type Ic supernovae (SNe Ic), broad-lined SNe Ic (SNe Ic-bl), show unusually high kinetic energies ($sim 10^{52}$ erg) which cannot be explained by the energy supplied by neutrinos alone. Many SNe Ic-bl have been observed in coincidence wi th long gamma-ray bursts (GRBs) which suggests a connection between SNe and GRBs. A small fraction of core-collapse supernovae (CCSNe) form a rapidly-rotating and strongly-magnetized protoneutron star (PNS), a proto-magnetar. Jets from such magnetars can provide the high kinetic energies observed in SNe Ic-bl and also provide the connection to GRBs. In this work we use the jetted outflow produced in a 3D CCSN simulation from a consistently formed proto-magnetar as the central engine for full-star explosion simulations. We extract a range of central engine parameters and find that the extracted engine energy is in the range of $6.231 times 10^{51}-1.725 times 10^{52}$ erg, the engine time-scale in the range of $0.479-1.159$ s and the engine half-opening angle in the range of $sim 9-19^{circ}$. Using these as central engines, we perform 2D special-relativistic (SR) hydrodynamic (HD) and radiation transfer simulations to calculate the corresponding light curves and spectra. We find that these central engine parameters successfully produce SNe Ic-bl which demonstrates that jets from proto-magnetars can be viable engines for SNe Ic-bl. We also find that only the central engines with smaller opening angles ($sim 10^{circ}$) form a GRB implying that GRB formation is likely associated with narrower jet outflows and Ic-bls without GRBs may be associated with wider outflows.
In the last decade a number of rapidly evolving transients have been discovered that are not easily explained by traditional supernovae models. We present optical and UV data on onee such object, SN 2018gep, that displayed a fast rise with a mostly f eatureless blue continuum around maximum light, and evolved to develop broad features more typical of a SN Ic-bl while retaining significant amounts of blue flux throughout its observations. The blue excess is most evident in its near-UV flux that is over 4 magnitudes brighter than other stripped envelope supernovae, but also visible in optical g$-$r colors at early times. Its fast rise time of $t_{rm rise,V} lesssim 6.2 pm 0.8$ days puts it squarely in the emerging class of Fast Evolving Luminous Transients, or Fast Blue Optical Transients. With a peak absolute magnitude of M$_r=-19.49 pm 0.23 $ mag it is on the extreme end of both the rise time and peak magnitude distribution for SNe Ic-bl. Only one other SN Ic-bl has similar properties, iPTF16asu, for which less of the important early time and UV data have been obtained. We show that the objects SNe 2018gep and iPTF16asu have similar photometric and spectroscopic properties and that they overall share many similarities with both SNe Ic-bl and Fast Evolving Transients. We obtain IFU observations of the SN 2018gep host galaxy and derive a number of properties for it. We show that the derived host galaxy properties for both SN 2018gep and iPTF16asu are overall consistent with the SNe Ic-bl and GRB/SNe sample while being on the extreme edge of the observed Fast Evolving Transient sample. These photometric observations are consistent with a simple SN Ic-bl model that has an additional form of energy injection at early times that drives the observed rapid, blue rise, and we speculate that this additional power source may extrapolate to the broader Fast Evolving Transient sample.
We study 34 Type Ic supernovae that have broad spectral features (SNe Ic-BL). We obtained our photometric data with the Palomar Transient Factory (PTF) and its continuation, the intermediate Palomar Transient Factory (iPTF). This is the first large, homogeneous sample of SNe Ic-BL from an untargeted survey. Furthermore, given the high cadence of (i)PTF, most of these SNe were discovered soon after explosion. We present K-corrected $Bgriz$ light curves of these SNe, obtained through photometry on template-subtracted images. We analyzed the shape of the $r$-band light curves, finding a correlation between the decline parameter $Delta m_{15}$ and the rise parameter $Delta m_{-10}$. We studied the SN colors and, based on $g-r$, we estimated the host-galaxy extinction. Peak $r$-band absolute magnitudes have an average of $-18.6pm0.5$ mag. We fit each $r$-band light curve with that of SN 1998bw (scaled and stretched) to derive the explosion epochs. We computed the bolometric light curves using bolometric corrections, $r$-band data, and $g-r$ colors. Expansion velocities from Fe II were obtained by fitting spectral templates of SNe Ic. Bolometric light curves and velocities at peak were fitted using the semianalytic Arnett model to estimate ejecta mass $M_{rm ej}$, explosion energy $E_{K}$ and $^{56}$Ni mass $M(^{56}$Ni). We find average values of $M_{rm ej} = 4pm3~{rm M}_{odot}$, $E_{K} = (7pm6) times 10^{51}~$erg, and $M(^{56}$Ni) $= 0.31pm0.16~{rm M}_{odot}$. We also estimated the degree of $^{56}$Ni mixing using scaling relations derived from hydrodynamical models and we find that all the SNe are strongly mixed. The derived explosion parameters imply that at least 21% of the progenitors of SNe Ic-BL are compatible with massive ($>28~{rm M}_{odot}$), possibly single stars, whereas at least 64% might come from less massive stars in close binary systems.
127 - L. J. Wang , X. F. Wang , Z. Cano 2017
It is well-known that ordinary supernovae (SNe) are powered by 56Ni cascade decay. Broad-lined type Ic SNe (SNe Ic-BL) are a subclass of SNe that are not all exclusively powered by 56Ni decay. It was suggested that some SNe Ic-BL are powered by magne tar spin-down. iPTF16asu is a peculiar broad-lined type Ic supernova discovered by the intermediate Palomar Transient Factory. With a rest-frame rise time of only 4 days, iPTF16asu challenges the existing popular models, for example, the radioactive heating (56Ni-only) and the magnetar+56Ni models. Here we show that this rapid rise could be attributed to interaction between the SN ejecta and a pre-existing circumstellar medium ejected by the progenitor during its final stages of evolution, while the late-time light curve can be better explained by energy input from a rapidly spinning magnetar. This model is a natural extension to the previous magnetar model. The mass-loss rate of the progenitor and ejecta mass are consistent with a progenitor that experienced a common envelope evolution in a binary. An alternative model for the early rapid rise of the light curve is the cooling of a shock propagating into an extended envelope of the progenitor. It is difficult at this stage to tell which model (interaction+magnetar+56Ni or cooling+magnetar+56Ni) is better for iPTF16asu. However, it is worth noting that the inferred envelope mass in the cooling+magnetar+56Ni is very high.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا