ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-orbit coupling has been conjectured to play a key role in the low-energy electronic structure of Sr2RuO4. Using circularly polarized light combined with spin- and angle-resolved photoemission spectroscopy, we directly measure the value of the ef fective spin-orbit coupling to be 130 +/- 30 meV. This is even larger than theoretically predicted and comparable to the energy splitting of the dxy and dxz,yz orbitals around the Fermi surface, resulting in a strongly momentum-dependent entanglement of spin and orbital character. As demonstrated by the spin expectation value obtained for a pair of electrons with zero total momentum, the classification of the Cooper pairs in terms of pure singlets or triplets fundamentally breaks down, necessitating a description of the unconventional superconducting state of Sr2RuO4 in terms of these newly found spin-orbital entangled eigenstates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا