ﻻ يوجد ملخص باللغة العربية
Spin-orbit coupling has been conjectured to play a key role in the low-energy electronic structure of Sr2RuO4. Using circularly polarized light combined with spin- and angle-resolved photoemission spectroscopy, we directly measure the value of the effective spin-orbit coupling to be 130 +/- 30 meV. This is even larger than theoretically predicted and comparable to the energy splitting of the dxy and dxz,yz orbitals around the Fermi surface, resulting in a strongly momentum-dependent entanglement of spin and orbital character. As demonstrated by the spin expectation value obtained for a pair of electrons with zero total momentum, the classification of the Cooper pairs in terms of pure singlets or triplets fundamentally breaks down, necessitating a description of the unconventional superconducting state of Sr2RuO4 in terms of these newly found spin-orbital entangled eigenstates.
Using angle-resolved photoemission spectroscopy it is revealed that in the vicinity of optimal doping the electronic structure of La2-xSrxCuO4 cuprate undergoes an electronic reconstruction associated with a wave vector q_a=(pi, 0). The reconstructed
We report high resolution ARPES measurements of detwinned FeSe single crystals. The application of a mechanical strain is used to promote the volume fraction of one of the orthorhombic domains in the sample, which we estimate to be 80$%$ detwinned. W
Despite many ARPES investigations of iron pnictides, the structure of the electron pockets is still poorly understood. By combining ARPES measurements in different experimental configurations, we clearly resolve their elliptic shape. Comparison with
We investigated the low-energy incommensurate (IC) magnetic fluctuations in Sr$_2$RuO$_4$ by the high-resolution inelastic neutron scattering measurements and random phase approximation (RPA) calculations. We observed a spin resonance with energy of
The improved resolution of laser-based angle-resolved photoemission spectroscopy (ARPES) allows reliable access to fine structures in the spectrum. We present a systematic, doping-dependent study of a recently discovered low-energy kink in the nodal