ترغب بنشر مسار تعليمي؟ اضغط هنا

209 - S.-B. Qian , L.-Y. Zhu , Z.-B. Dai 2011
We report here the tentative discovery of a Jovian planet in orbit around the rapidly pulsating subdwarf B-type (sdB-type) eclipsing binary NY Vir. By using new determined eclipse times together with those collected from the literature, we detect tha t the observed-calculated (O-C) curve of NY Vir shows a small-amplitude cyclic variation with a period of 7.9,years and a semiamplitude of 6.1,s, while it undergoes a downward parabolic change (revealing a period decrease at a rate of $dot{P}=-9.2times{10^{-12}}$). The periodic variation was analyzed for the light-travel time effect via the presence of a third body. The mass of the tertiary companion was determined to be $M_3sin{i^{prime}}=2.3(pm0.3)$,$M_{Jupiter}$ when a total mass of 0.60,$M_{odot}$ for NY Vir is adopted. This suggests that it is most probably a giant circumbinary planet orbiting NY Vir at a distance of about 3.3 astronomical units (AU). Since the rate of period decrease can not be explained by true angular momentum loss caused by gravitational radiation or/and magnetic braking, the observed downward parabolic change in the O-C diagram may be only a part of a long-period (longer than 15 years) cyclic variation, which may reveal the presence of another Jovian planet ($sim2.5$$M_{Jupiter}$) in the system.
Four newest CCD eclipse timings of the white dwarf for polar UZ Fornacis and Six updated CCD mid-eclipse times for SW Sex type nova-like V348 Puppis are obtained. The detailed O-C analyses for both CVs inside period gap are made. Orbital period incre ases at a rate of $2.63(pm0.58)times10^{-11} s;s^{-1}$ for UZ Fornacis and of $5.8(pm1.9)times10^{-12} s;s^{-1}$ for V348 Puppis, respectively, are discovered in their new O-C diagrams. However, the conservative mass transfer from the secondary to the massive white dwarf cannot explain the observed orbital period increases for both CVs, which are regarded as part of modulations at longer periods. Moreover, the O-C diagram of UZ Fornacis shows a possible cyclical change with a period of $sim23.4(pm5.1)yr$. For explaining the observed cyclical period changes in UZ Fornacis, both mechanisms of magnetic activity cycles in the late-type secondary and the light travel-time effect are regarded as two probable causes. Not only does the modulation period 23.4yr obey the empirical correlation derived by cite{lan99}, but also the estimated fractional period change $Delta P/Psim7.3times10^{-7}$ displays a behavior similar to that of the CVs below the period gap. On the other hand, a calculation for the light travel-time effect implies that the tertiary component in UZ Fornacis may be a brown dwarf with a high confidence level, when the orbital inclination of the third body is larger than $16^{circ}$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا