ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron diffraction is used to examine the polarization of weak static antiferromagnetism in high quality single crystalline URu2Si2. As previously documented, elastic Bragg-like diffraction develops for temperature T<T_{HO}= 17.5 K at q=(100) but no t at wave vector transfer q=(001). The peak width indicates correlation lengths xi_c=230(12) AA and xi_a=240(15) AA. The integrated intensity of the T-dependent peaks corresponds to a sample averaged c-oriented staggered moment of mu_{c}=0.022(1) mu_B at T=1.7 K. The absence of T-dependent diffraction at q=(001) places a limit mu_{perp}<0.0011 mu_B on an f- or d-orbital based in-plane staggered magnetic dipole moment, which is associated with multipolar orders proposed for URu_2Si_2.
Neutron diffraction measurements are presented exploring the magnetic and structural phase behaviors of the candidate J$_{eff}=1/2$ Mott insulating iridate Sr$_2$IrO$_4$. Comparisons are drawn between the correlated magnetism in this single layer sys tem and its bilayer analog Sr$_3$Ir$_2$O$_7$ where both materials exhibit magnetic domains originating from crystallographic twinning and comparable moment sizes. Weakly temperature dependent superlattice peaks violating the reported tetragonal space group of Sr$_2$IrO$_4$ are observed supporting the notion of a lower structural symmetry arising from a high temperature lattice distortion, and we use this to argue that moments orient along a unique in-plane axis demonstrating an orthorhombic symmetry in the resulting spin structure. Our results demonstrate that the correlated spin order and structural phase behaviors in both single and bilayer Sr$_{n+1}$Ir$_{n}$O$_{3n+1}$ systems are remarkably similar and suggest comparable correlation strengths in each system.
Through a neutron scattering, charge transport, and magnetization study, the correlated ground state in the bilayer iridium oxide Sr$_3$Ir$_2$O$_7$ is explored. Our combined results resolve scattering consistent with a high temperature magnetic phase that persists above 600 K, reorients at the previously defined $T_{AF}=280$ K, and coexists with an electronic ground state whose phase behavior suggests the formation of a fluctuating charge or orbital phase that freezes below $T^{*}approx70$ K. Our study provides a window into the emergence of multiple electronic order parameters near the boundary of the metal to insulator phase transition of the 5d $J_{eff}=1/2$ Mott phase.
Magnetic and phonon excitations in the antiferromagnet CoO with an unquenched orbital angular momentum are studied by neutron scattering. Results of energy scans in several Brillouin zones in the (HHL) plane for energy transfers up to 16 THz are pres ented. The measurements were performed in the antiferromagnetic ordered state at 6 K (well below TN~290 K) as well as in the paramagnetic state at 450 K. Several magnetic excitation modes are identified from the dependence of their intensity on wavevector and temperature. Within a Hunds rule model the excitations correspond to fluctuations of coupled orbital and spin degrees of freedom whose bandwidth is controlled by interionic superexchange. The different <111> ordering domains give rise to several magnetic peaks at each wavevector transfer.
Using neutron scattering we have determined the magnetic structure and fluctuations in the YBa2Cu3O6.35 superconductor (Tc=18 K). The long-range ordered collinear spins of the insulating antiferromagnet are replaced by a commensurate central mode ari sing from slow, isotropically polarized, short-range spin correlations. The inelastic spectrum up to 30 meV is broad in wave vector and commensurate. In contrast to the the resonance peak of higher Tc superconductors, the spins exhibit a single overdamped spectrum whose rate of relaxation decreases on cooling and saturates at 5 meV below 50 K. As the relaxation rate saturates the quasi-static spin correlations grow and become resolution limited in energy. The spin susceptibility at high temperatures illustrates that the dominant energy scale is set by the temperature. At low temperatures, the scale length is geometric and not linked by velocity to dynamic widths. There is no observable suppression of the spin fluctuations or central mode upon the onset of superconductivity. The spins respond not to coherent charge pairs but to hole doping allowing coexistence of glassy short range spin order with superconductivity. Since the physics of the weakly superconducting system YBCO6.35 must connect continuously with that in more strongly superconducting YBCO6.5, we find that neither incommensurate stripe-like spin modulations nor a well-defined neutron spin resonance are essential for the onset with doping of pairing in a high temperature cuprate superconductor.
By means of neutron scattering we have determined new branches of magnetic excitations in orbitally active CoO (TN=290 K) up to 15 THz and for temperatures from 6 K to 450 K. Data were taken in the (111) direction in six single-crystal zones. From th e dependence on temperature and Q we have identified several branches of magnetic excitation. We describe a model for the coupled orbital and spin states of Co2+ subject to a crystal field and tetragonal distortion.
Neutron scattering from high-quality YBCO6.334 single crystals with a T$_c$ of 8.4 K shows that there is no coexistence with long-range antiferromagnetic order at this very low, near-critical doping of $sim$0.055, in contrast to claims based on local probe techniques. We find that the neutron resonance seen in optimally doped YBCO7 and underdoped YBCO6.5, has undergone large softening and damping. It appears that the overdamped resonance, with a relaxation rate of 2 meV, is coupled to a zero-energy central mode that grows with cooling and eventually saturates with no change at or below T$_c$. Although a similar qualitative behaviour is found for YBCO6.35, our study shows that the central mode is stronger in YBCO6.334 than YBCO6.35. The system remains subcritical with short-ranged three dimensional correlations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا