ترغب بنشر مسار تعليمي؟ اضغط هنا

119 - Z. Q. Liu , W. Lu , S. W. Zeng 2014
We report very large bandgap enhancement in SrTiO3 (STO) films (fabricated by pulsed laser deposition below 800 {deg}C), which can be up to 20% greater than the bulk value, depending on the deposition temperature. The origin is comprehensively invest igated and finally attributed to Sr/Ti antisite point defects, supported by density functional theory calculations. More importantly, the bandgap enhancement can be utilized to tailor the electronic and magnetic phases of the two-dimensional electron gas (2DEG) in STO-based interface systems. For example, the oxygen-vacancy-induced 2DEG (2DEG-V) at the interface between amorphous LaAlO3 and STO films is more localized and the ferromagnetic order in the STO-film-based 2DEG-V can be clearly seen from low-temperature magnetotransport measurements. This opens an attractive path to tailor electronic, magnetic and optical properties of STO-based oxide interface systems under intensive focus in the oxide electronics community. Meanwhile, our study provides key insight into the origin of the fundamental issue that STO films are difficult to be doped into the fully metallic state by oxygen vacancies.
130 - Z. Q. Liu , L. Sun , Z. Huang 2014
We report that in unannealed LaAlO3/SrTiO3 (LAO/STO) heterostructures the critical thickness for the appearance of the two-dimensional electron gas can be less than 4 unit cell (uc), the interface is conducting even for STO substrates with mixed term inations and the low-temperature resistance upturn in LAO/STO heterostructures with thick LAO layers strongly depends on laser fluence. Our experimental results provide fundamental insights into the different roles played by oxygen vacancies and polarization catastrophe in the two-dimensional electron gas in crystalline LAO/STO heterostructures.
Localization of electrons in the two-dimensional electron gas at the LaAlO$_3$/SrTiO$_3$ interface is investigated by varying the channel thickness in order to establish the nature of the conducting channel. Layers of SrTiO$_3$ were grown on NdGaO$_3 $ (110) substrates and capped with LaAlO$_3$. When the SrTiO$_3$ thickness is $leq 6$ unit cells, most electrons at the interface are localized, but when the number of SrTiO$_3$ layers is 8-16, the free carrier density approaches $3.3 times 10^{14}$ cm$^{-2}$, the value corresponding to charge transfer of 0.5 electron per unit cell at the interface. The number of delocalized electrons decreases again when the SrTiO$_3$ thickness is $geq 20$ unit cells. The $sim{4}$ nm conducting channel is therefore located significantly below the interface. The results are explained in terms of Anderson localization and the position of the mobility edge with respect to the Fermi level.
110 - Z. Q. Liu , C. J. Li , W. M. Lu 2013
The relative importance of atomic defects and electron transfer in explaining conductivity at the crystalline LaAlO3/SrTiO3 interface has been a topic of debate. Metallic interfaces with similar electronic properties produced by amorphous oxide overl ayers on SrTiO3 have called in question the original polarization catastrophe model. We resolve the issue by a comprehensive comparison of (100)-oriented SrTiO3 substrates with crystalline and amorphous overlayers of LaAlO3 of different thicknesses prepared under different oxygen pressures. For both types of overlayers, there is a critical thickness for the appearance of conductivity, but its value is always 4 unit cells (around 1.6 nm) for the oxygen-annealed crystalline case, whereas in the amorphous case, the critical thickness could be varied in the range 0.5 to 6 nm according to the deposition conditions. Subsequent ion milling of the overlayer restores the insulating state for the oxygen-annealed crystalline heterostructures but not for the amorphous ones. Oxygen post-annealing removes the oxygen vacancies, and the interfaces become insulating in the amorphous case. However, the interfaces with a crystalline overlayer remain conducting with reduced carrier density. These results demonstrate that oxygen vacancies are the dominant source of mobile carriers when the LaAlO3 overlayer is amorphous, while both oxygen vacancies and polarization catastrophe contribute to the interface conductivity in unannealed crystalline LaAlO3/SrTiO3 heterostructures, and the polarization catastrophe alone accounts for the conductivity in oxygen-annealed crystalline LaAlO3/SrTiO3 heterostructures. Furthermore, we find that the crystallinity of the LaAlO3 layer is crucial for the polarization catastrophe mechanism in the case of crystalline LaAlO3 overlayers.
The cross section for $e^+ e^- to pi^+ pi^- J/psi$ between 3.8 GeV and 5.5 GeV is measured with a 967 fb$^{-1}$ data sample collected by the Belle detector at or near the $Upsilon(nS)$ ($n = 1, 2, ..., 5$) resonances. The Y(4260) state is observed, a nd its resonance parameters are determined. In addition, an excess of $pi^+ pi^- J/psi$ production around 4 GeV is observed. This feature can be described by a Breit-Wigner parameterization with properties that are consistent with the Y(4008) state that was previously reported by Belle. In a study of $Y(4260) to pi^+ pi^- J/psi$ decays, a structure is observed in the $M(pi^pmjpsi)$ mass spectrum with $5.2sigma$ significance, with mass $M=(3894.5pm 6.6pm 4.5) {rm MeV}/c^2$ and width $Gamma=(63pm 24pm 26)$ MeV/$c^{2}$, where the errors are statistical and systematic, respectively. This structure can be interpreted as a new charged charmonium-like state.
71 - Z. Q. Liu , Z. Huang , W. M. Lu 2012
The surface termination of (100)-oriented LaAlO3 (LAO) single crystals was examined by atomic force microscopy and optimized to produce a single-terminated atomically flat surface by annealing. Then the atomically flat STO film was achieved on a sing le-terminated LAO substrate, which is expected to be similar to the n-type interface of two-dimensional electron gas (2DEG), i.e., (LaO)-(TiO2). Particularly, that can serve as a mirror structure for the typical 2DEG heterostructure to further clarify the origin of 2DEG. This newly developed interface was determined to be highly insulating. Additionally, this study demonstrates an approach to achieve atomically flat film growth based on LAO substrates.
99 - Z. Q. Liu , W. M. Lu , S. L. Lim 2012
The search for oxide-based room-temperature ferromagnetism has been one of the holy grails in condensed matter physics. Room-temperature ferromagnetism observed in Nb-doped SrTiO3 single crystals is reported in this Rapid Communication. The ferromagn etism can be eliminated by air annealing (making the samples predominantly diamagnetic) and can be recovered by subsequent vacuum annealing. The temperature dependence of magnetic moment resembles the temperature dependence of carrier density, indicating that the magnetism is closely related to the free carriers. Our results suggest that the ferromagnetism is induced by oxygen vacancies. In addition, hysteretic magnetoresistance was observed for magnetic field parallel to current, indicating that the magnetic moments are in the plane of the samples. The x-ray photoemission spectroscopy, the static time-of-flight and the dynamic secondary ion mass spectroscopy and proton induced x-ray emission measurements were performed to examine magnetic impurities, showing that the observed ferromagnetism is unlikely due to any magnetic contaminant.
93 - Z. Q. Liu , X. S. Qin , 2008
A combined fit is performed to the BaBar and Belle measurements of the e+e- to pi+pi-psi(2S) cross sections for center-of-mass energy between threshold and 5.5 GeV. The resonant parameters of the Y(4360) and Y(4660) are determined. The mass is 4355^{ +9}_{-10}pm 9 MeV/c^2 and the width is 103^{+17}_{-15}pm 11 MeV/c^2 for the Y(4360), and the mass is 4661^{+9}_{-8}pm 6 MeV/c^2 and the width is 42^{+17}_{-12}pm 6 MeV/c^2 for the Y(4660). The production of the Y(4260) in pi+pi-psi(2S) mode is found to be at 2sigma level, and B(Y(4260) to pi+pi-psi(2S))Gamma_{e+e-} is found to be less than 4.3 eV/c^2 at the 90% confidence level, or equal to 7.4^{+2.1}_{-1.7} eV/c^2 depending on it interferes with the Y(4360) constructively or destructively. These information will shed light on the understanding of the nature of the Y states observed in initial state radiation processes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا