ترغب بنشر مسار تعليمي؟ اضغط هنا

185 - L. Sun , A. Petrenko , Z. Leghtas 2013
Quantum error correction (QEC) is required for a practical quantum computer because of the fragile nature of quantum information. In QEC, information is redundantly stored in a large Hilbert space and one or more observables must be monitored to reve al the occurrence of an error, without disturbing the information encoded in an unknown quantum state. Such observables, typically multi-qubit parities such as <XXXX>, must correspond to a special symmetry property inherent to the encoding scheme. Measurements of these observables, or error syndromes, must also be performed in a quantum non-demolition (QND) way and faster than the rate at which errors occur. Previously, QND measurements of quantum jumps between energy eigenstates have been performed in systems such as trapped ions, electrons, cavity quantum electrodynamics (QED), nitrogen-vacancy (NV) centers, and superconducting qubits. So far, however, no fast and repeated monitoring of an error syndrome has been realized. Here, we track the quantum jumps of a possible error syndrome, the photon number parity of a microwave cavity, by mapping this property onto an ancilla qubit. This quantity is just the error syndrome required in a recently proposed scheme for a hardware-efficient protected quantum memory using Schr{o}dinger cat states in a harmonic oscillator. We demonstrate the projective nature of this measurement onto a parity eigenspace by observing the collapse of a coherent state onto even or odd cat states. The measurement is fast compared to the cavity lifetime, has a high single-shot fidelity, and has a 99.8% probability per single measurement of leaving the parity unchanged. In combination with the deterministic encoding of quantum information in cat states realized earlier, our demonstrated QND parity tracking represents a significant step towards implementing an active system that extends the lifetime of a quantum bit.
Qubit reset is crucial at the start of and during quantum information algorithms. We present the experimental demonstration of a practical method to force qubits into their ground state, based on driving certain qubit and cavity transitions. Our prot ocol, called the double drive reset of population is tested on a superconducting transmon qubit in a three-dimensional cavity. Using a new method for measuring population, we show that we can prepare the ground state with a fidelity of at least 99.5 % in less than 3 microseconds; faster times and higher fidelity are predicted upon parameter optimization.
We analyze a quantum reservoir engineering method, originally introduced by [Sarlette et al. in Phys. Rev. Lett. 107, 010402 (2011) -- arXiv 1011.5057], for the stabilization of non-classical field states in high quality cavities. We generalize the m ethod to the protection of mesoscopic entangled field states shared by two non-degenerate field modes. The reservoir is made up of a stream of atoms undergoing successive composite interactions with the cavity, each combining resonant with non-resonant parts. We get a detailed insight into the competition between the engineered reservoir and decoherence. We show that the operation is quite insensitive to experimental imperfections and that it could thus be implemented in the near future, either in the context of microwave Cavity Quantum Electrodynamics or in that of circuit-QED.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا