ترغب بنشر مسار تعليمي؟ اضغط هنا

105 - Shiqi Sheng , Z. C. Tu 2015
Typical heat engines exhibit a kind of homotypy: The heat exchanges between a cyclic heat engine and its two heat reservoirs abide by the same function type; the forward and backward flows of an autonomous heat engine also conform to the same functio n type. This homotypy mathematically reflects in the existence of hidden symmetries for heat engines. The heat exchanges between the cyclic heat engine and its two reservoirs are dual under the joint transformation of parity inversion and time-reversal operation. Similarly, the forward and backward flows in the autonomous heat engine are also dual under the parity inversion. With the consideration of these hidden symmetries, we derive a generic nonlinear constitutive relation up to the quadratic order for tight-coupling cyclic heat engines and that for tight-coupling autonomous heat engines, respectively.
177 - Shiqi Sheng , Z. C. Tu 2014
We present a unified perspective on nonequilibrium heat engines by generalizing nonlinear irreversible thermodynamics. For tight-coupling heat engines, a generic constitutive relation of nonlinear response accurate up to the quadratic order is derive d from the symmetry argument and the stall condition. By applying this generic nonlinear constitutive relation to finite-time thermodynamics, we obtain the necessary and sufficient condition for the universality of efficiency at maximum power, which states that a tight-coupling heat engine takes the universal efficiency at maximum power up to the quadratic order if and only if either the engine symmetrically interacts with two heat reservoirs or the elementary thermal energy flowing through the engine matches the characteristic energy of the engine. As a result, we solve the following paradox: On the one hand, the universal quadratic term in the efficiency at maximum power for tight-coupling heat engines proved as a consequence of symmetry [M. Esposito, K. Lindenberg, and C. Van den Broeck, Phys. Rev. Lett. 102, 130602 (2009); S. Q. Sheng and Z. C. Tu, Phys. Rev. E 89, 012129 (2014)]; On the other hand, two typical heat engines including the Curzon-Ahlborn endoreversible heat engine [F. L. Curzon and B. Ahlborn, Am. J. Phys. 43, 22 (1975)] and the Feynman ratchet [Z. C. Tu, J. Phys. A 41, 312003 (2008)] recover the universal efficiency at maximum power regardless of any symmetry.
78 - Shiqi Sheng , Z. C. Tu 2013
The concepts of weighted reciprocal of temperature and weighted thermal flux are proposed for a heat engine operating between two heat baths and outputting mechanical work. With the aid of these two concepts, the generalized thermodynamic fluxes and forces can be expressed in a consistent way within the framework of irreversible thermodynamics. Then the efficiency at maximum power output for a heat engine, one of key topics in finite-time thermodynamics, is investigated on the basis of a generic model under the tight-coupling condition. The corresponding results have the same forms as those of low-dissipation heat engines [M. Esposito, R. Kawai, K. Lindenberg, and C. Van den Broeck, {Phys. Rev. Lett.} textbf{105}, 150603 (2010)]. The mappings from two kinds of typical heat engines, such as the low-dissipation heat engine and the Feynman ratchet, into the present generic model are constructed. The universal efficiency at maximum power output up to the quadratic order is found to be valid for a heat engine coupled symmetrically and tightly with two baths. The concepts of weighted reciprocal of temperature and weighted thermal flux are also transplanted to the optimization of refrigerators.
126 - Shiqi Sheng , Z. C. Tu 2012
A unified $chi$-criterion for heat devices (including heat engines and refrigerators) which is defined as the product of the energy conversion efficiency and the heat absorbed per unit time by the working substance [de Tom{a}s emph{et al} 2012 textit {Phys. Rev. E} textbf{85} 010104(R)] is optimized for tight-coupling heat engines and refrigerators operating between two heat baths at temperatures $T_c$ and $T_h(>T_c)$. By taking a new convention on the thermodynamic flux related to the heat transfer between two baths, we find that for a refrigerator tightly and symmetrically coupled with two heat baths, the coefficient of performance (i.e., the energy conversion efficiency of refrigerators) at maximum $chi$ asymptotically approaches to $sqrt{varepsilon_C}$ when the relative temperature difference between two heat baths $varepsilon_C^{-1}equiv (T_h-T_c)/T_c$ is sufficiently small. Correspondingly, the efficiency at maximum $chi$ (equivalent to maximum power) for a heat engine tightly and symmetrically coupled with two heat baths is proved to be $eta_C/2+eta_C^2/8$ up to the second order term of $eta_Cequiv (T_h-T_c)/T_h$, which reverts to the universal efficiency at maximum power for tight-coupling heat engines operating between two heat baths at small temperature difference in the presence of left-right symmetry [Esposito emph{et al} 2009 textit{Phys. Rev. Lett.} textbf{102} 130602].
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا