ﻻ يوجد ملخص باللغة العربية
Typical heat engines exhibit a kind of homotypy: The heat exchanges between a cyclic heat engine and its two heat reservoirs abide by the same function type; the forward and backward flows of an autonomous heat engine also conform to the same function type. This homotypy mathematically reflects in the existence of hidden symmetries for heat engines. The heat exchanges between the cyclic heat engine and its two reservoirs are dual under the joint transformation of parity inversion and time-reversal operation. Similarly, the forward and backward flows in the autonomous heat engine are also dual under the parity inversion. With the consideration of these hidden symmetries, we derive a generic nonlinear constitutive relation up to the quadratic order for tight-coupling cyclic heat engines and that for tight-coupling autonomous heat engines, respectively.
We present a unified perspective on nonequilibrium heat engines by generalizing nonlinear irreversible thermodynamics. For tight-coupling heat engines, a generic constitutive relation of nonlinear response accurate up to the quadratic order is derive
A unified $chi$-criterion for heat devices (including heat engines and refrigerators) which is defined as the product of the energy conversion efficiency and the heat absorbed per unit time by the working substance [de Tom{a}s emph{et al} 2012 textit
Brownian heat engines use local temperature gradients in asymmetric potentials to move particles against an external force. The energy efficiency of such machines is generally limited by irreversible heat flow carried by particles that make contact w
The aim of this paper is to determine lost works in a molecular engine and compare results with macro (classical) heat engines. Firstly, irreversible thermodynamics are reviewed for macro and molecular cycles. Secondly, irreversible thermodynamics ap
Even though irreversibility is one of the major hallmarks of any real life process, an actual understanding of irreversible processes remains still mostly semiempirical. In this paper we formulate a thermodynamic uncertainty principle for irreversibl