ترغب بنشر مسار تعليمي؟ اضغط هنا

The Keck Array is a system of cosmic microwave background (CMB) polarimeters, each similar to the BICEP2 experiment. In this paper we report results from the 2012 and 2013 observing seasons, during which the Keck Array consisted of five receivers all operating in the same (150 GHz) frequency band and observing field as BICEP2. We again find an excess of B-mode power over the lensed-$Lambda$CDM expectation of $> 5 sigma$ in the range $30 < ell < 150$ and confirm that this is not due to systematics using jackknife tests and simulations based on detailed calibration measurements. In map difference and spectral difference tests these new data are shown to be consistent with BICEP2. Finally, we combine the maps from the two experiments to produce final Q and U maps which have a depth of 57 nK deg (3.4 $mu$K arcmin) over an effective area of 400 deg$^2$ for an equivalent survey weight of 250,000 $mu$K$^{-2}$. The final BB band powers have noise uncertainty a factor of 2.3 times better than the previous results, and a significance of detection of excess power of $> 6sigma$.
101 - Z. Ahmed , M. Amiri , S. J. Benton 2014
BICEP3 is a 550 mm-aperture refracting telescope for polarimetry of radiation in the cosmic microwave background at 95 GHz. It adopts the methodology of BICEP1, BICEP2 and the Keck Array experiments - it possesses sufficient resolution to search for signatures of the inflation-induced cosmic gravitational-wave background while utilizing a compact design for ease of construction and to facilitate the characterization and mitigation of systematics. However, BICEP3 represents a significant breakthrough in per-receiver sensitivity, with a focal plane area 5$times$ larger than a BICEP2/Keck Array receiver and faster optics ($f/1.6$ vs. $f/2.4$). Large-aperture infrared-reflective metal-mesh filters and infrared-absorptive cold alumina filters and lenses were developed and implemented for its optics. The camera consists of 1280 dual-polarization pixels; each is a pair of orthogonal antenna arrays coupled to transition-edge sensor bolometers and read out by multiplexed SQUIDs. Upon deployment at the South Pole during the 2014-15 season, BICEP3 will have survey speed comparable to Keck Array 150 GHz (2013), and will significantly enhance spectral separation of primordial B-mode power from that of possible galactic dust contamination in the BICEP2 observation patch.
Ground-based millimeter and sub-millimeter telescopes are attempting to image the sky with ever-larger cryogenically-cooled bolometer arrays, but face challenges in mitigating the infrared loading accompanying large apertures. Absorptive infrared fil ters supported by mechanical coolers scale insufficiently with aperture size. Reflective metal-mesh filters placed behind the telescope window provide a scalable solution in principle, but have been limited by photolithography constraints to diameters under 300 mm. We present laser etching as an alternate technique to photolithography for fabrication of large-area reflective filters, and show results from lab tests of 500 mm-diameter filters. Filters with up to 700 mm diameter can be fabricated using laser etching with existing capability.
We describe the design of a new polarization sensitive receiver, SPT-3G, for the 10-meter South Pole Telescope (SPT). The SPT-3G receiver will deliver a factor of ~20 improvement in mapping speed over the current receiver, SPTpol. The sensitivity of the SPT-3G receiver will enable the advance from statistical detection of B-mode polarization anisotropy power to high signal-to-noise measurements of the individual modes, i.e., maps. This will lead to precise (~0.06 eV) constraints on the sum of neutrino masses with the potential to directly address the neutrino mass hierarchy. It will allow a separation of the lensing and inflationary B-mode power spectra, improving constraints on the amplitude and shape of the primordial signal, either through SPT-3G data alone or in combination with BICEP-2/KECK, which is observing the same area of sky. The measurement of small-scale temperature anisotropy will provide new constraints on the epoch of reionization. Additional science from the SPT-3G survey will be significantly enhanced by the synergy with the ongoing optical Dark Energy Survey (DES), including: a 1% constraint on the bias of optical tracers of large-scale structure, a measurement of the differential Doppler signal from pairs of galaxy clusters that will test General Relativity on ~200 Mpc scales, and improved cosmological constraints from the abundance of clusters of galaxies.
Electron-optical imaging instruments like Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) use specially designed solenoid electromagnets for focusing of electron beam probe. Indicators of imaging performance of these ins truments, like spatial resolution, have strong correlation with focal characteristics of the magnetic lenses which in turn have been shown to be functions of the spatial distribution of axial magnetic field generated by them. Owing to complicated design of practical lenses, empirical mathematical expressions are deemed convenient for use in physics based calculations of their focal properties. So, degree of closeness of such models to the actual field distribution determines accuracy of the calculations. Mathematical models proposed by Glaser[1] and Ramberg[1] have historically been put into extensive use. In this paper the authors discuss one such model with secant-hyperbolic type magnetic field distribution function, and present a comparison among these models, with results from finite element based field simulations as reference.
Material screening for identifying low-energy electron emitters and alpha-decaying isotopes is now a prerequisite for rare-event searches (e.g., dark-matter direct detection and neutrinoless double-beta decay) for which surface radiocontamination has become an increasingly important background. The BetaCage, a gaseous neon time-projection chamber, is a proposed ultra-sensitive (and nondestructive) screener for alpha- and beta-emitting surface contaminants to which existing screening facilities are insufficiently sensitive. Sensitivity goals are 0.1 betas per keV-m$^2$-day and 0.1 alphas per m$^2$-day, with the former limited by Compton scattering of photons in the screening samples and (thanks to tracking) the latter expected to be signal-limited; radioassays and simulations indicate backgrounds from detector materials and radon daughters should be subdominant. We report on details of the background simulations and detector design that provide the discrimination, shielding, and radiopurity necessary to reach our sensitivity goals for a chamber with a 95$times$95 cm$^2$ sample area positioned below a 40 cm drift region and monitored by crisscrossed anode and cathode planes consisting of 151 wires each.
A prototype multiwire proportional chamber (MWPC) was developed to demonstrate the feasibility of constructing a radiopure time projection chamber with MWPC track readout to assay materials for alpha- and beta-emitting surface contaminants for future rare-event-search experiments as well as other scientific fields. The design features and assembly techniques described here are motivated by the position and energy resolution required to reconstruct alpha and beta tracks while efficiently rejecting backgrounds. Results from a test setup using an $^{55}$Fe x-ray source indicate excellent operational stability and a near-ideal energy resolution of 15.8% FWHM at 5.89 keV and a gas gain of $sim$10$^{4}$.
We report results of a search for Weakly Interacting Massive Particles (WIMPS) with the silicon detectors of the CDMS II experiment. This blind analysis of 140.2 kg-days of data taken between July 2007 and September 2008 revealed three WIMP-candidate events with a surface-event background estimate of 0.41^{+0.20}_{-0.08}(stat.)^{+0.28}_{-0.24}(syst.). Other known backgrounds from neutrons and 206Pb are limited to < 0.13 and <0.08 events at the 90% confidence level, respectively. The exposure of this analysis is equivalent to 23.4 kg-days for a recoil energy range of 7-100 keV for a WIMP of mass 10 GeV/c2. The probability that the known backgrounds would produce three or more events in the signal region is 5.4%. A profile likelihood ratio test of the three events that includes the measured recoil energies gives a 0.19% probability for the known-background-only hypothesis when tested against the alternative WIMP+background hypothesis. The highest likelihood occurs for a WIMP mass of 8.6 GeV/c2 and WIMP-nucleon cross section of 1.9e-41 cm2.
We report results of a search for Weakly Interacting Massive Particles (WIMPs) with the Si detectors of the CDMS II experiment. This report describes a blind analysis of the first data taken with CDMS IIs full complement of detectors in 2006-2007; re sults from this exposure using the Ge detectors have already been presented. We observed no candidate WIMP-scattering events in an exposure of 55.9 kg-days before analysis cuts, with an expected background of ~1.1 events. The exposure of this analysis is equivalent to 10.3 kg-days over a recoil energy range of 7-100 keV for an ideal Si detector and a WIMP mass of 10 GeV/c2. These data set an upper limit of 1.7x10-41 cm2 on the WIMP-nucleon spin-independent cross section of a 10 GeV/c2 WIMP. These data exclude parameter space for spin-independent WIMP-nucleon elastic scattering that is relevant to recent searches for low-mass WIMPs.
Between the BICEP2 and Keck Array experiments, we have deployed over 1500 dual polarized antenna coupled bolometers to map the Cosmic Microwave Backgrounds polarization. We have been able to rapidly deploy these detectors because they are completely planar with an integrated phased-array antenna. Through our experience in these experiments, we have learned of several challenges with this technology- specifically the beam synthesis in the antenna- and in this paper we report on how we have modified our designs to mitigate these challenges. In particular, we discus differential steering errors between the polarization pairs beam centroids due to microstrip cross talk and gradients of penetration depth in the niobium thin films of our millimeter wave circuits. We also discuss how we have suppressed side lobe response with a Gaussian taper of our antenna illumination pattern. These improvements will be used in Spider, Polar-1, and this seasons retrofit of Keck Array.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا