ﻻ يوجد ملخص باللغة العربية
We report results of a search for Weakly Interacting Massive Particles (WIMPS) with the silicon detectors of the CDMS II experiment. This blind analysis of 140.2 kg-days of data taken between July 2007 and September 2008 revealed three WIMP-candidate events with a surface-event background estimate of 0.41^{+0.20}_{-0.08}(stat.)^{+0.28}_{-0.24}(syst.). Other known backgrounds from neutrons and 206Pb are limited to < 0.13 and <0.08 events at the 90% confidence level, respectively. The exposure of this analysis is equivalent to 23.4 kg-days for a recoil energy range of 7-100 keV for a WIMP of mass 10 GeV/c2. The probability that the known backgrounds would produce three or more events in the signal region is 5.4%. A profile likelihood ratio test of the three events that includes the measured recoil energies gives a 0.19% probability for the known-background-only hypothesis when tested against the alternative WIMP+background hypothesis. The highest likelihood occurs for a WIMP mass of 8.6 GeV/c2 and WIMP-nucleon cross section of 1.9e-41 cm2.
The PICASSO dark matter search experiment operated an array of 32 superheated droplet detectors containing 3.0 kg of C$_{4}$F$_{10}$ and collected an exposure of 231.4 kgd at SNOLAB between March 2012 and January 2014. We report on the final results
We report results of a search for Weakly Interacting Massive Particles (WIMPs) with the Si detectors of the CDMS II experiment. This report describes a blind analysis of the first data taken with CDMS IIs full complement of detectors in 2006-2007; re
LUX, the worlds largest dual-phase xenon time-projection chamber, with a fiducial target mass of 118 kg and 10,091 kg-days of exposure thus far, is currently the most sensitive direct dark matter search experiment. The initial null-result limit on th
We revisit MSSM scenarios with light neutralino as a dark matter candidate in view of the latest LHC and dark matter direct and indirect detection experiments. We show that scenarios with a very light neutralino (~ 10 GeV) and a scalar bottom quark c
We report the results of a weakly-interacting massive particle (WIMP) dark matter search using the full 80.1;live-day exposure of the first stage of the PandaX experiment (PandaX-I) located in the China Jin-Ping Underground Laboratory. The PandaX-I d