ترغب بنشر مسار تعليمي؟ اضغط هنا

We construct rotating boson stars in (4+1)-dimensional asymptotically Anti-de Sitter space-time (aAdS) with two equal angular momenta that are composed out of a massive and self-interacting scalar field. These solutions possess a single Killing vecto r field. We construct explicit solutions of the equations in the case of a fixed AdS background and vanishing self-coupling of the scalar field. These are the generalizations of the oscillons discussed in the literature previously now taking the mass of the scalar field into account. We study the evolution of the spectrum of massive oscillons when taking backreaction and/or the self-coupling into account numerically. We observe that very compact boson stars possess an ergoregion.
We construct electrically charged Q-balls and boson stars in a model with a scalar self-interaction potential resulting from gauge mediated supersymmetry breaking. We discuss the properties of these solutions in detail and emphasize the differences t o the uncharged case. We observe that Q-balls can only be constructed up to a maximal value of the charge of the scalar field, while for boson stars the interplay between the attractive gravitational force and the repulsive electromagnetic force determines their behaviour. We find that the vacuum is stable with respect to pair production in the presence of our charged boson stars. We also study the motion of charged, massive test particles in the space-time of boson stars. We find that in contrast to charged black holes the motion of charged test particles in charged boson star space-times is planar, but that the presence of the scalar field plays a crucial role for the qualitative features of the trajectories. Applications of this test particle motion can be made in the study of extreme-mass ratio inspirals (EMRIs) as well as astrophysical plasmas relevant e.g. in the formation of accretion discs and polar jets of compact objects.
We study spherically symmetric soliton solutions in a model with a conformally coupled scalar field as well as in full conformal gravity. We observe that a new type of limiting behaviour appears for particular choices of the self-coupling of the scal ar field, i.e. the solitons interpolate smoothly between the Anti-de Sitter vacuum and an uncharged configuration. Furthermore, within conformal gravity the qualitative approach of a limiting solution does not change when varying the charge of the scalar field - contrary to the Einstein-Hilbert case. However, it changes with the scalar self-coupling.
We study the stability of charged solitons in 5-dimensional Anti-de Sitter (AdS) space-time. We show that for appropriate choices of the parameters of the model these solutions become unstable to form scalar hair. We find that the existence of charge d solitons with scalar hair depends crucially on the charge and the mass of the scalar field. We investigate the dependence of the spectrum of solutions on the mass of the scalar field in detail. For positive mass of the scalar field the hairy solitons can be interpreted as charged boson stars. We find that for sufficiently small value of the charge of the scalar field a forbidden band of the boson star mass and charge exists, while all our results indicate that - contrary to the asymptotically flat space-time case - boson stars in asymptotically AdS can have arbitrarily large charge and mass.
We study angularly excited as well as interacting non-topological solitons, so-called Q-balls and their gravitating counterparts, so-called boson stars in 3+1 dimensions. Q-balls and boson stars carry a non-vanishing Noether charge and arise as solut ions of complex scalar field models in a flat space-time background and coupled minimally to gravity, respectively. We present examples of interacting Q-balls that arise due to angular excitations, which are closely related to the spherical harmonics. We also construct explicit examples of rotating boson stars that interact with non-rotating boson stars. We observe that rotating boson stars tend to absorb the non-rotating ones for increasing, but reasonably small gravitational coupling. This is a new phenomenon as compared to the flat space-time limit and is related to the negative contribution of the rotation term to the energy density of the solutions. In addition, our results indicate that a system of a rotating and non-rotating boson star can become unstable if the direct interaction term in the potential is large enough. This instability is related to the appearance of ergoregions.
We study Abelian strings in a fixed de Sitter background. We find that the gauge and Higgs fields extend smoothly across the cosmological horizon and that the string solutions have oscillating scalar fields outside the cosmological horizon for all cu rrently accepted values of the cosmological constant. If the gauge to Higgs boson mass ratio is small enough, the gauge field function has a power-like behaviour, while it is oscillating outside the cosmological horizon if Higgs and gauge boson mass are comparable. Moreover, we observe that Abelian strings exist only up to a maximal value of the cosmological constant and that two branches of solutions exist that meet at this maximal value. We also construct radially excited solutions that only exist for non-vanishing values of the cosmological constant and are thus a novel feature as compared to flat space-time. Considering the effect of the de Sitter string on the space-time, we observe that the deficit angle increases with increasing cosmological constant. Lensed objects would thus be separated by a larger angle as compared to asymptotically flat space-time.
We study non-topological solitons, so called Q-balls, which carry a non-vanishing Noether charge and arise as lump solutions of self-interacting complex scalar field models. Explicit examples of new axially symmetric non-spinning Q-ball solutions tha t have not been studied so far are constructed numerically. These solutions can be interpreted as angular excitations of the fundamental $Q$-balls and are related to the spherical harmonics. Correspondingly, they have higher energy and their energy densities possess two local maxima on the positive z-axis. We also study two Q-balls interacting via a potential term in (3+1) dimensions and construct examples of stationary, solitonic-like objects in (3+1)-dimensional flat space-time that consist of two interacting global scalar fields. We concentrate on configurations composed of one spinning and one non-spinning Q-ball and study the parameter-dependence of the energy and charges of the configuration. In addition, we present numerical evidence that for fixed values of the coupling constants two different types of 2-Q-ball solutions exist: solutions with defined parity, but also solutions which are asymmetric with respect to reflexion through the x-y-plane.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا