ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider a class of malicious attacks against remote state estimation. A sensor with limited resources adopts an acknowledgement (ACK)-based online power schedule to improve the remote state estimation performance. A malicious attacker can modify the ACKs from the remote estimator and convey fake information to the sensor. When the capability of the attacker is limited, we propose an attack strategy for the attacker and analyze the corresponding effect on the estimation performance. The possible responses of the sensor are studied and a condition for the sensor to discard ACKs and switch from online schedule to offline schedule is provided.
We consider sensor transmission power control for state estimation, using a Bayesian inference approach. A sensor node sends its local state estimate to a remote estimator over an unreliable wireless communication channel with random data packet drop s. As related to packet dropout rate, transmission power is chosen by the sensor based on the relative importance of the local state estimate. The proposed power controller is proved to preserve Gaussianity of local estimate innovation, which enables us to obtain a closed-form solution of the expected state estimation error covariance. Comparisons with alternative non data-driven controllers demonstrate performance improvement using our approach.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا