ترغب بنشر مسار تعليمي؟ اضغط هنا

Data augmentation is practically helpful for visual recognition, especially at the time of data scarcity. However, such success is only limited to quite a few light augmentations (e.g., random crop, flip). Heavy augmentations (e.g., gray, grid shuffl e) are either unstable or show adverse effects during training, owing to the big gap between the original and augmented images. This paper introduces a novel network design, noted as Augmentation Pathways (AP), to systematically stabilize training on a much wider range of augmentation policies. Notably, AP tames heavy data augmentations and stably boosts performance without a careful selection among augmentation policies. Unlike traditional single pathway, augmented images are processed in different neural paths. The main pathway handles light augmentations, while other pathways focus on heavy augmentations. By interacting with multiple paths in a dependent manner, the backbone network robustly learns from shared visual patterns among augmentations, and suppresses noisy patterns at the same time. Furthermore, we extend AP to a homogeneous version and a heterogeneous version for high-order scenarios, demonstrating its robustness and flexibility in practical usage. Experimental results on ImageNet benchmarks demonstrate the compatibility and effectiveness on a much wider range of augmentations (e.g., Crop, Gray, Grid Shuffle, RandAugment), while consuming fewer parameters and lower computational costs at inference time. Source code:https://github.com/ap-conv/ap-net.
With the rapid development of electronic commerce, the way of shopping has experienced a revolutionary evolution. To fully meet customers massive and diverse online shopping needs with quick response, the retailing AI system needs to automatically re cognize products from images and videos at the stock-keeping unit (SKU) level with high accuracy. However, product recognition is still a challenging task, since many of SKU-level products are fine-grained and visually similar by a rough glimpse. Although there are already some products benchmarks available, these datasets are either too small (limited number of products) or noisy-labeled (lack of human labeling). In this paper, we construct a human-labeled product image dataset named Products-10K, which contains 10,000 fine-grained SKU-level products frequently bought by online customers in JD.com. Based on our new database, we also introduced several useful tips and tricks for fine-grained product recognition. The products-10K dataset is available via https://products-10k.github.io/.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا