ترغب بنشر مسار تعليمي؟ اضغط هنا

Augmentation Pathways Network for Visual Recognition

351   0   0.0 ( 0 )
 نشر من قبل Yalong Bai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Data augmentation is practically helpful for visual recognition, especially at the time of data scarcity. However, such success is only limited to quite a few light augmentations (e.g., random crop, flip). Heavy augmentations (e.g., gray, grid shuffle) are either unstable or show adverse effects during training, owing to the big gap between the original and augmented images. This paper introduces a novel network design, noted as Augmentation Pathways (AP), to systematically stabilize training on a much wider range of augmentation policies. Notably, AP tames heavy data augmentations and stably boosts performance without a careful selection among augmentation policies. Unlike traditional single pathway, augmented images are processed in different neural paths. The main pathway handles light augmentations, while other pathways focus on heavy augmentations. By interacting with multiple paths in a dependent manner, the backbone network robustly learns from shared visual patterns among augmentations, and suppresses noisy patterns at the same time. Furthermore, we extend AP to a homogeneous version and a heterogeneous version for high-order scenarios, demonstrating its robustness and flexibility in practical usage. Experimental results on ImageNet benchmarks demonstrate the compatibility and effectiveness on a much wider range of augmentations (e.g., Crop, Gray, Grid Shuffle, RandAugment), while consuming fewer parameters and lower computational costs at inference time. Source code:https://github.com/ap-conv/ap-net.

قيم البحث

اقرأ أيضاً

Transformers with remarkable global representation capacities achieve competitive results for visual tasks, but fail to consider high-level local pattern information in input images. In this paper, we present a generic Dual-stream Network (DS-Net) to fully explore the representation capacity of local and global pattern features for image classification. Our DS-Net can simultaneously calculate fine-grained and integrated features and efficiently fuse them. Specifically, we propose an Intra-scale Propagation module to process two different resolutions in each block and an Inter-Scale Alignment module to perform information interaction across features at dual scales. Besides, we also design a Dual-stream FPN (DS-FPN) to further enhance contextual information for downstream dense predictions. Without bells and whistles, the propsed DS-Net outperforms Deit-Small by 2.4% in terms of top-1 accuracy on ImageNet-1k and achieves state-of-the-art performance over other Vision Transformers and ResNets. For object detection and instance segmentation, DS-Net-Small respectively outperforms ResNet-50 by 6.4% and 5.5 % in terms of mAP on MSCOCO 2017, and surpasses the previous state-of-the-art scheme, which significantly demonstrates its potential to be a general backbone in vision tasks. The code will be released soon.
Over the past several years progress in designing better neural network architectures for visual recognition has been substantial. To help sustain this rate of progress, in this work we propose to reexamine the methodology for comparing network archi tectures. In particular, we introduce a new comparison paradigm of distribution estimates, in which network design spaces are compared by applying statistical techniques to populations of sampled models, while controlling for confounding factors like network complexity. Compared to current methodologies of comparing point and curve estimates of model families, distribution estimates paint a more complete picture of the entire design landscape. As a case study, we examine design spaces used in neural architecture search (NAS). We find significant statistical differences between recent NAS design space variants that have been largely overlooked. Furthermore, our analysis reveals that the design spaces for standard model families like ResNeXt can be comparable to the more complex ones used in recent NAS work. We hope these insights into distribution analysis will enable more robust progress toward discovering better networks for visual recognition.
129 - Tianlong Chen , Yu Cheng , Zhe Gan 2021
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models. Here, we present an effective and efficient alternative that advocates adversarial augmentation on i ntermediate feature embeddings, instead of relying on computationally-expensive pixel-level perturbations. We propose Adversarial Feature Augmentation and Normalization (A-FAN), which (i) first augments visual recognition models with adversarial features that integrate flexible scales of perturbation strengths, (ii) then extracts adversarial feature statistics from batch normalization, and re-injects them into clean features through feature normalization. We validate the proposed approach across diverse visual recognition tasks with representative backbone networks, including ResNets and EfficientNets for classification, Faster-RCNN for detection, and Deeplab V3+ for segmentation. Extensive experiments show that A-FAN yields consistent generalization improvement over strong baselines across various datasets for classification, detection and segmentation tasks, such as CIFAR-10, CIFAR-100, ImageNet, Pascal VOC2007, Pascal VOC2012, COCO2017, and Cityspaces. Comprehensive ablation studies and detailed analyses also demonstrate that adding perturbations to specific modules and layers of classification/detection/segmentation backbones yields optimal performance. Codes and pre-trained models will be made available at: https://github.com/VITA-Group/CV_A-FAN.
397 - Yihan Du , Yan Yan , Si Chen 2020
In recent years, deep learning based visual tracking methods have obtained great success owing to the powerful feature representation ability of Convolutional Neural Networks (CNNs). Among these methods, classification-based tracking methods exhibit excellent performance while their speeds are heavily limited by the expensive computation for massive proposal feature extraction. In contrast, matching-based tracking methods (such as Siamese networks) possess remarkable speed superiority. However, the absence of online updating renders these methods unadaptable to significant object appearance variations. In this paper, we propose a novel real-time visual tracking method, which adopts an object-adaptive LSTM network to effectively capture the video sequential dependencies and adaptively learn the object appearance variations. For high computational efficiency, we also present a fast proposal selection strategy, which utilizes the matching-based tracking method to pre-estimate dense proposals and selects high-quality ones to feed to the LSTM network for classification. This strategy efficiently filters out some irrelevant proposals and avoids the redundant computation for feature extraction, which enables our method to operate faster than conventional classification-based tracking methods. In addition, to handle the problems of sample inadequacy and class imbalance during online tracking, we adopt a data augmentation technique based on the Generative Adversarial Network (GAN) to facilitate the training of the LSTM network. Extensive experiments on four visual tracking benchmarks demonstrate the state-of-the-art performance of our method in terms of both tracking accuracy and speed, which exhibits great potentials of recurrent structures for visual tracking.
Our work focuses on tackling the challenging but natural visual recognition task of long-tailed data distribution (i.e., a few classes occupy most of the data, while most classes have rarely few samples). In the literature, class re-balancing strateg ies (e.g., re-weighting and re-sampling) are the prominent and effective methods proposed to alleviate the extreme imbalance for dealing with long-tailed problems. In this paper, we firstly discover that these re-balancing methods achieving satisfactory recognition accuracy owe to that they could significantly promote the classifier learning of deep networks. However, at the same time, they will unexpectedly damage the representative ability of the learned deep features to some extent. Therefore, we propose a unified Bilateral-Branch Network (BBN) to take care of both representation learning and classifier learning simultaneously, where each branch does perform its own duty separately. In particular, our BBN model is further equipped with a novel cumulative learning strategy, which is designed to first learn the universal patterns and then pay attention to the tail data gradually. Extensive experiments on four benchmark datasets, including the large-scale iNaturalist ones, justify that the proposed BBN can significantly outperform state-of-the-art methods. Furthermore, validation experiments can demonstrate both our preliminary discovery and effectiveness of tailored designs in BBN for long-tailed problems. Our method won the first place in the iNaturalist 2019 large scale species classification competition, and our code is open-source and available at https://github.com/Megvii-Nanjing/BBN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا