ﻻ يوجد ملخص باللغة العربية
Data augmentation is practically helpful for visual recognition, especially at the time of data scarcity. However, such success is only limited to quite a few light augmentations (e.g., random crop, flip). Heavy augmentations (e.g., gray, grid shuffle) are either unstable or show adverse effects during training, owing to the big gap between the original and augmented images. This paper introduces a novel network design, noted as Augmentation Pathways (AP), to systematically stabilize training on a much wider range of augmentation policies. Notably, AP tames heavy data augmentations and stably boosts performance without a careful selection among augmentation policies. Unlike traditional single pathway, augmented images are processed in different neural paths. The main pathway handles light augmentations, while other pathways focus on heavy augmentations. By interacting with multiple paths in a dependent manner, the backbone network robustly learns from shared visual patterns among augmentations, and suppresses noisy patterns at the same time. Furthermore, we extend AP to a homogeneous version and a heterogeneous version for high-order scenarios, demonstrating its robustness and flexibility in practical usage. Experimental results on ImageNet benchmarks demonstrate the compatibility and effectiveness on a much wider range of augmentations (e.g., Crop, Gray, Grid Shuffle, RandAugment), while consuming fewer parameters and lower computational costs at inference time. Source code:https://github.com/ap-conv/ap-net.
Transformers with remarkable global representation capacities achieve competitive results for visual tasks, but fail to consider high-level local pattern information in input images. In this paper, we present a generic Dual-stream Network (DS-Net) to
Over the past several years progress in designing better neural network architectures for visual recognition has been substantial. To help sustain this rate of progress, in this work we propose to reexamine the methodology for comparing network archi
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models. Here, we present an effective and efficient alternative that advocates adversarial augmentation on i
In recent years, deep learning based visual tracking methods have obtained great success owing to the powerful feature representation ability of Convolutional Neural Networks (CNNs). Among these methods, classification-based tracking methods exhibit
Our work focuses on tackling the challenging but natural visual recognition task of long-tailed data distribution (i.e., a few classes occupy most of the data, while most classes have rarely few samples). In the literature, class re-balancing strateg