ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological superconductors represent a phase of matter with nonlocal properties which cannot smoothly change from one phase to another, providing a robustness suitable for quantum computing. Substantial progress has been made towards a qubit based o n Majorana modes, non-Abelian anyons of Ising ($Z_2$) topological order whose exchange$-$braiding$-$produces topologically protected logic operations. However, because braiding Ising anyons does not offer a universal quantum gate set, Majorana qubits are computationally limited. This drawback can be overcome by introducing parafermions, a novel generalized set of non-Abelian modes ($Z_n$), an array of which supports universal topological quantum computation. The primary route to synthesize parafermions involves inducing superconductivity in the fractional quantum Hall (fqH) edge. Here we use high-quality graphene-based van der Waals devices with narrow superconducting niobium nitride (NbN) electrodes, in which superconductivity and robust fqH coexist. We find crossed Andreev reflection (CAR) across the superconductor separating two counterpropagating fqH edges which demonstrates their superconducting pairing. Our observed CAR probability of the integer edges is insensitive to magnetic field, temperature, and filling, which provides evidence for spin-orbit coupling inherited from NbN enabling the pairing of the otherwise spin-polarized edges. FqH edges notably exhibit a CAR probability higher than that of integer edges once fully developed. This fqH CAR probability remains nonzero down to our lowest accessible temperature, suggesting superconducting pairing of fractional charges. These results provide a route to realize novel topological superconducting phases with universal braiding statistics in fqH-superconductor hybrid devices based on graphene and NbN.
Quantum interferometers are powerful tools for probing the wave-nature and exchange statistics of indistinguishable particles. Of particular interest are interferometers formed by the chiral, one-dimensional (1D) edge channels of the quantum Hall eff ect (QHE) that guide electrons without dissipation. Using quantum point contacts (QPCs) as beamsplitters, these 1D channels can be split and recombined, enabling interference of charged particles. Such quantum Hall interferometers (QHIs) can be used for studying exchange statistics of anyonic quasiparticles. In this study we develop a robust QHI fabrication technique in van der Waals (vdW) materials and realize a graphene-based Fabry-Perot (FP) QHI. By careful heterostructure design, we are able to measure pure Aharonov-Bohm (AB) interference effect in the integer QHE, a major technical challenge in finite size FP interferometers. We find that integer edge modes exhibit high visibility interference due to relatively large velocities and long phase coherence lengths. Our QHI with tunable QPCs presents a versatile platform for interferometer studies in vdW materials and enables future experiments in the fractional QHE.
Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied polarized state of filling factor v=2/3 was originally proposed to harbor two counter-propagating edge modes: a downstream v =1 and an upstream v=1/3. However, charge equilibration between these two modes always led to an observed downstream v=2/3 charge mode accompanied by an upstream neutral mode (preventing an observation of the original proposal). Here, we present a new approach to synthetize the v=2/3 edge mode from its basic counter-propagating charged constituents, allowing a controlled equilibration between the two counter-propagating charge modes. This novel platform is based on a carefully designed double-quantum-well, which hosts two populated electronic sub-bands (lower and upper), with corresponding filling factors, vl & vu. By separating the 2D plane to two gated intersecting halves, each with different fillings, counter-propagating chiral modes can be formed along the intersection line. Equilibration between these modes can be controlled with the top gates voltage and the magnetic field. Our measurements of the two-terminal conductance G2T and the presence of a neutral mode allowed following the transition from the non-equilibrated charged modes, manifested by G2T=(4/3)e2/h, to the fully equilibrated modes, with a downstream charge mode with G2T=(2/3)e2/h accompanied by an upstream neutral mode.
Electronic systems harboring one dimensional helical modes, where the spin and momentum of the electron are locked, have lately become an important field of its own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity, a unique phase that gives rise to exotic Majorana zero modes. Even more interesting are fractional helical states which have not been observed before and which open the route for the realization of the generalized para fermions quasiparticles. Possessing non abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one dimensional helical and fractional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double quantum well structure in a high mobility GaAs based system. In turn, the quantum well hosts two sub bands of 2D electrons, each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter propagating integer, as well as fractional, edge modes, belonging to Landau levels with opposite spins are formed, rendering the modes helical. We demonstrate that due to spin protection, these helical modes remain ballistic, without observed mixing for large distances. In addition to the formation of helical modes, this new platform can be exploited as a rich playground for an artificial induction of compounded fractional edge modes, as well as construction of interferometers based on chiral edge modes.
Self-assisted growth of InAs nanowires on graphene by molecular beam epitaxy is reported. Nanowires with diameter of ~50 nm and aspect ratio of up to 100 were achieved. The morphological and structural properties of the nanowires were carefully studi ed by changing the substrate from bilayer graphene through buffer layer to quasi-free-standing monolayer graphene. The positional relation of the InAs NWs with the graphene substrate was determined. A 30{deg} orientation configuration of some of the InAs NWs is shown to be related to the surface corrugation of the graphene substrate. InAs NW-based devices for transport measurements were fabricated, and the conductance measurements showed a semi-ballistic behavior. In Josephson junction measurements in the non-linear regime, Multiple Andreev Reflections were observed, and an inelastic scattering length of about 900 nm was derived.
We report an observation of a new, non dissipative and non local supercurrent, carried by quartets; each consisting of four entangled electrons. The supercurrent is a result of a novel Andreev bound state (ABS), formed among three superconducting ter minals. While in a two-terminal Josephson junction the usual ABS, and thus the DC Josephson current, exist only in equilibrium, in the present realization the ABS exists also in the strongly nonlinear regime (biased terminals). The presence of supercurrent carried by quartets was established by performing non-local conductance and cross-correlation of current fluctuations measurements, in different devices made of aluminum-InAs nanowire junctions. An extensive and detailed theoretical study is intertwined with the experimental results.
Non-linear charge transport in SIS Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An ap plied bias $V_{SD}$ leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge $ne$ traversing the junction, with $n$ integer larger than $2{Delta}/eV_{SD}$ and ${Delta}$ the superconducting order parameter. Exceptionally, just above the gap, $eV_{SD}>2{Delta}$, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles; each with energy dependent charge, being a superposition of an electron and a hole. Employing shot noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge $q=e^*/e=n$, with $n=1-4$; thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region $eV_{SD}{approx}2{Delta}$, we found a reproducible and clear dip in the extracted charge to $q{approx}0.6$, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure.
Majorana fermions are the only fermionic particles that are expected to be their own antiparticles. While elementary particles of the Majorana type were not identified yet, quasi-particles with Majorana like properties, born from interacting electron s in the solid, were predicted to exist. Here, we present thorough experimental studies, backed by numerical simulations, of a system composed of an aluminum superconductor in proximity to an indium arsenide nanowire, with the latter possessing strong spin-orbit coupling. An induced 1d topological superconductor - supporting Majorana fermions at both ends - is expected to form. We concentrate on the characteristics of a distinct zero bias conductance peak (ZBP), and its splitting in energy, both appearing only with a small magnetic field applied along the wire. The ZBP was found to be robustly tied to the Fermi energy over a wide range of system parameters. While not providing a definite proof of a Majorana state, the presented data and the simulations support strongly its existence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا