ترغب بنشر مسار تعليمي؟ اضغط هنا

We develop an efficient method based on the linear regression algorithm to probe the cosmological CPT violation using the CMB polarisation data. We validate this method using simulated CMB data and apply it to recent CMB observations. We find that a combined data sample of BICEP1 and BOOMERanG 2003 favours a nonzero isotropic rotation angle at $2.3sigma$ confidence level, ie, $Deltaalpha=-3.3 pm1.4$ deg (68% CL) with systematics included.
Vacuum energy is a simple model for dark energy driving an accelerated expansion of the universe. If the vacuum energy is inhomogeneous in spacetime then it must be interacting. We present the general equations for a spacetime-dependent vacuum energy in cosmology, including inhomogeneous perturbations. We show how any dark energy cosmology can be described by an interacting vacuum+matter. Different models for the interaction can lead to different behaviour (e.g., sound speed for dark energy perturbations) and hence could be distinguished by cosmological observations. As an example we present the cosmic microwave microwave background anisotropies and the matter power spectrum for two differe
Vacuum energy remains the simplest model of dark energy which could drive the accelerated expansion of the Universe without necessarily introducing any new degrees of freedom. Inhomogeneous vacuum energy is necessarily interacting in general relativi ty. Although the four-velocity of vacuum energy is undefined, an interacting vacuum has an energy transfer and the vacuum energy defines a particular foliation of spacetime with spatially homogeneous vacuum energy in cosmological solutions. It is possible to give a consistent description of vacuum dynamics and in particular the relativistic equations of motion for inhomogeneous perturbations given a covariant prescription for the vacuum energy, or equivalently the energy transfer four-vector, and we construct gauge-invariant vacuum perturbations. We show that any dark energy cosmology can be decomposed into an interacting vacuum+matter cosmology whose inhomogeneous perturbations obey simple first-order equations.
117 - Yuting Wang , Lixin Xu , 2011
In this paper, we investigate the Ricci dark energy model with perturbations through the joint constraints of current cosmological data sets from dynamical and geometrical perspectives. We use the full cosmic microwave background information from WMA P seven-year data, the baryon acoustic oscillations from the Sloan Digital Sky Survey and the Two Degree Galaxy Redshift Survey, and type Ia supernovae from the Union2 compilation of the Supernova Cosmology Project Collaboration. A global constraint is performed by employing the Markov chain Monte Carlo method. With the best-fitting results, we show the differences of cosmic microwave background power spectra and background evolutions for the cosmological constant model and Ricci dark energy model with perturbations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا