ترغب بنشر مسار تعليمي؟ اضغط هنا

An efficient probe of the cosmological CPT violation

77   0   0.0 ( 0 )
 نشر من قبل Gong-Bo Zhao
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop an efficient method based on the linear regression algorithm to probe the cosmological CPT violation using the CMB polarisation data. We validate this method using simulated CMB data and apply it to recent CMB observations. We find that a combined data sample of BICEP1 and BOOMERanG 2003 favours a nonzero isotropic rotation angle at $2.3sigma$ confidence level, ie, $Deltaalpha=-3.3 pm1.4$ deg (68% CL) with systematics included.

قيم البحث

اقرأ أيضاً

Spherical collapse predicts that a single value of the turnaround density (average matter density within the scale on which a structure detaches from the Hubble flow) characterizes all cosmic structures at the same redshift. It has been recently show n by Korkidis et al. that this feature persists in complex non-spherical galaxy clusters identified in N-body simulations. Here we show that the low-redshift evolution of the turnaround density constrains the cosmological parameters, and that it can be used to derive a local constraint on $Omega_Lambda$ alone, independent of $Omega_m$. The turnaround density thus provides a promising new way to exploit upcoming large cosmological datasets.
In order to accommodate the neutrino oscillation signals from the solar, atmospheric, and LSND data, a sterile fourth neutrino is generally invoked, though the fits to the data are becoming more and more constrained. However, it has recently been sho wn that the data can be explained with only three neutrinos, if one invokes CPT violation to allow different masses and mixing angles for neutrinos and antineutrinos. We explore the nature of neutrinos in such CPT-violating scenarios. Majorana neutrino masses are allowed, but in general, there are no longer Majorana neutrinos in the conventional sense. However, CPT-violating models still have interesting consequences for neutrinoless double beta decay. Compared to the usual case, while the larger mass scale (from LSND) may appear, a greater degree of suppression can also occur.
CPT violation has the potential to explain all three existing neutrino anomalies without enlarging the neutrino sector. CPT violation in the Dirac mass terms of the three neutrino flavors preserves Lorentz invariance, but generates independent masses for neutrinos and antineutrinos. This specific signature is strongly motivated by braneworld scenarios with extra dimensions, where neutrinos are the natural messengers for Standard Model physics of CPT violation in the bulk. A simple model of maximal CPT violation is sufficient to explain the exisiting neutrino data quite neatly, while making dramatic predictions for the upcoming KamLAND and MiniBooNE experiments. Furthermore we obtain a promising new mechanism for baryogenesis.
119 - Ralf Lehnert 2009
The largest gap in our understanding of nature at the fundamental level is perhaps a unified description of gravity and quantum theory. Although there are currently a variety of theoretical approaches to this question, experimental research in this f ield is inhibited by the expected Planck-scale suppression of quantum-gravity effects. However, the breakdown of spacetime symmetries has recently been identified as a promising signal in this context: a number of models for underlying physics can accommodate minuscule Lorentz and CPT violation, and such effects are amenable to ultrahigh-precision tests. This presentation will give an overview of the subject. Topics such as motivations, the SME test framework, mechanisms for relativity breakdown, and experimental tests will be reviewed. Emphasis is given to observations involving antimatter.
We present a new approach for quantifying the abundance of galaxy clusters and constraining cosmological parameters using dynamical measurements. In the standard method, galaxy line-of-sight (LOS) velocities, $v$, or velocity dispersions are used to infer cluster masses, $M$, in order to quantify the halo mass function (HMF), $dn(M)/dlog(M)$, which is strongly affected by mass measurement errors. In our new method, the probability distribution of velocities for each cluster in the sample are summed to create a new statistic called the velocity distribution function (VDF), $dn(v)/dv$. The VDF can be measured more directly and precisely than the HMF and it can also be robustly predicted with cosmological simulations which capture the dynamics of subhalos or galaxies. We apply these two methods to mock cluster catalogs and forecast the bias and constraints on the matter density parameter $Omega_m$ and the amplitude of matter fluctuations $sigma_8$ in flat $Lambda$CDM cosmologies. For an example observation of 200 massive clusters, the VDF with (without) velocity errors constrains the parameter combination $sigma_8Omega_m^{0.29 (0.29)} = 0.587 pm 0.011 (0.583 pm 0.011)$ and shows only minor bias. However, the HMF with dynamical mass errors is biased to low $Omega_m$ and high $sigma_8$ and the fiducial model lies well outside of the forecast constraints, prior to accounting for Eddington bias. When the VDF is combined with constraints from the cosmic microwave background (CMB), the degeneracy between cosmological parameters can be significantly reduced. Upcoming spectroscopic surveys that probe larger volumes and fainter magnitudes will provide a larger number of clusters for applying the VDF as a cosmological probe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا