ترغب بنشر مسار تعليمي؟ اضغط هنا

Greedy algorithms are popular in compressive sensing for their high computational efficiency. But the performance of current greedy algorithms can be degenerated seriously by noise (both multiplicative noise and additive noise). A robust version of g reedy cosparse greedy algorithm (greedy analysis pursuit) is presented in this paper. Comparing with previous methods, The proposed robust greedy analysis pursuit algorithm is based on an optimization model which allows both multiplicative noise and additive noise in the data fitting constraint. Besides, a new stopping criterion that is derived. The new algorithm is applied to compressive sensing of ECG signals. Numerical experiments based on real-life ECG signals demonstrate the performance improvement of the proposed greedy algorithms.
This paper addresses compressive sensing for multi-channel ECG. Compared to the traditional sparse signal recovery approach which decomposes the signal into the product of a dictionary and a sparse vector, the recently developed cosparse approach exp loits sparsity of the product of an analysis matrix and the original signal. We apply the cosparse Greedy Analysis Pursuit (GAP) algorithm for compressive sensing of ECG signals. Moreover, to reduce processing time, classical signal-channel GAP is generalized to the multi-channel GAP algorithm, which simultaneously reconstructs multiple signals with similar support. Numerical experiments show that the proposed method outperforms the classical sparse multi-channel greedy algorithms in terms of accuracy and the single-channel cosparse approach in terms of processing speed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا