ترغب بنشر مسار تعليمي؟ اضغط هنا

The study of topological phases of light suggests novel opportunities for creating robust optical structures and on-chip photonic devices which are immune against scattering losses and structural disorder. However, many recent demonstrations of topol ogical effects in optics employ structures with relatively large scales. Here we discuss the physics and realisation of topological photonics on small scales, with the dimensions often smaller or comparable with the wavelength of light. We highlight the recent experimental demonstrations of small-scale topological states based on arrays of resonant nanoparticles and discuss a novel photonic platform employing higher-order topological effects for creating subwavelength highly efficient topologically protected optical cavities. We pay a special attention to the recent progress on topological polaritonic structures and summarize with our vision on the future directions of nanoscale topological photonics and its impact on other fields.
We demonstrate that rotationally symmetric chiral metasurfaces can support arbitrarily sharp resonances with the maximum optical chirality determined by precise shaping of bound states in the continuum (BICs). Being uncoupled from one circular polari sation of light and resonantly coupled to its counterpart, a metasurface hosting the chiral BIC resonance exhibits a narrow peak in the circular dichroism spectrum. We propose a realization of such chiral BIC metasurfaces based on pairs of dielectric bars and validate the concept of maximum chirality by numerical simulations
The study of topological effects in physics is a hot area, and only recently researchers were able to address the important issues of topological properties of interacting quantum systems. But it is still a great challenge to describe multi-particle and interaction effects. Here, we introduce multi-particle Wannier states for interacting systems with co-translational symmetry. We reveal how the shift of multi-particle Wannier state relates to the multi-particle Chern number, and study the two-boson Thouless pumping in an interacting Rice-Mele model. In addition to the bound-state Thouless pumping in which two bosons move unidirectionally as a whole, we find topologically resonant tunneling in which two bosons move unidirectionally, one by the other, provided the neighboring-well potential bias matches the interaction energy. Our work creates a new paradigm for multi-particle topological effects and lays a cornerstone for detecting interacting topological states.
We introduce the concept of nonlinear graphene metasurfaces employing the controllable interaction between a graphene layer and a planar metamaterial. Such hybrid metasurfaces support two types of subradiant resonant modes, asymmetric modes of struct ured metamaterial elements (metamolecules) and graphene plasmons exhibiting strong mutual coupling and avoided dispersion crossing. High tunability of graphene plasmons facilitates strong interaction between the subradiant modes, modifying the spectral position and lifetime of the associated Fano resonances. We demonstrate that strong resonant interaction, combined with the subwavelength localization of plasmons, leads to the enhanced nonlinear response and high efficiency of the second-harmonic generation.
We study nonlinear properties of multilayer metamaterials created by graphene sheets separated by dielectric layers. We demonstrate that such structures can support localized nonlinear modes described by the discrete nonlinear Schr{o}dinger equation and that its solutions are associated with stable discrete plasmon solitons. We also analyze the nonlinear surface modes in truncated graphene metamaterials being a nonlinear analog of surface Tamm states.
The propagation of electromagnetic waves along the surface of a nonlinear dielectric covered by a graphene layer is investigated. The main result is that such a surface can support and stabilize nonlinear transverse electric (TE) plasmon polaritons. We demonstrated that these nonlinear TE modes have a subwavelength localization in the direction perpendicular to the surface, with the intensity much higher than that of the incident wave which excites the polariton.
We review some recent (mostly ours) results on the Anderson localization of light and electron waves in complex disordered systems, including: (i) left-handed metamaterials, (ii) magneto-active optical structures, (iii) graphene superlattices, and (i v) nonlinear dielectric media. First, we demonstrate that left-handed metamaterials can significantly suppress localization of light and lead to an anomalously enhanced transmission. This suppression is essential at the long-wavelength limit in the case of normal incidence, at specific angles of oblique incidence (Brewster anomaly), and in the vicinity of the zero-epsilon or zero-mu frequencies for dispersive metamaterials. Remarkably, in disordered samples comprised of alternating normal and left-handed metamaterials, the reciprocal Lyapunov exponent and reciprocal transmittance increment can differ from each other. Second, we study magneto-active multilayered structures, which exhibit nonreciprocal localization of light depending on the direction of propagation and on the polarization. At resonant frequencies or realizations, such nonreciprocity results in effectively unidirectional transport of light. Third, we discuss the analogy between the wave propagation through multilayered samples with metamaterials and the charge transport in graphene, which enables a simple physical explanation of unusual conductive properties of disordered graphene superlatices. We predict disorder-induced resonances of the transmission coefficient at oblique incidence of the Dirac quasiparticles. Finally, we demonstrate that an interplay of nonlinearity and disorder in dielectric media can lead to bistability of individual localized states excited inside the medium at resonant frequencies. This results in nonreciprocity of the wave transmission and unidirectional transport of light.
We consider a general problem of laser pulse heating of spherical metal particles with the sizes ranging from nanometers to millimeters. We employ the exact Mie solutions of the diffraction problem and solve heat-transfer equations to determine the m aximum temperature at the particle surface as a function of optical and thermometric parameters of the problem. The main attention is paid to the case when the thermometric conductivity of the particle is much larger than that of the environment, as it is in the case of metal particles in fluids. We show that in this case at any given finite duration of the laser pulse the maximum temperature rise as a function of the particle size reaches an absolute maximum at a certain finite size of the particle, and we suggest simple approximate analytical expressions for this dependence which covers the entire range of variations of the problem parameters and agree well with direct numerical simulations.
We study the properties of two-color nonlinear localized modes which may exist at the interfaces separating two different periodic photonic lattices in quadratic media, focussing on the impact of phase mismatch of the photonic lattices on the propert ies, stability, and threshold power requirements for the generation of interface localized modes. We employ both an effective discrete model and continuum model with periodic potential and find good qualitative agreement between both models. Dynamics excitation of interface modes shows that, a two-color interface twisted mode splits into two beams with different escaping angles and carrying different energies when entering a uniform medium from the quadratic photonic lattice. The output position and energy contents of each two-color interface solitons can be controlled by judicious tuning of
We study the properties of surface solitons generated at the edge of a semi-infinite photonic lattice in nonlinear quadratic media, namely two-color surface lattice solitons. We analyze the impact of phase mismatch on existence and stability of surfa ce modes, and find novel classes of two-color twisted surface solitons which are stable in a large domain of their existence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا