ترغب بنشر مسار تعليمي؟ اضغط هنا

Laser Pulse Heating of Spherical Metal Particles

32   0   0.0 ( 0 )
 نشر من قبل Andrey Miroshnichenko
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a general problem of laser pulse heating of spherical metal particles with the sizes ranging from nanometers to millimeters. We employ the exact Mie solutions of the diffraction problem and solve heat-transfer equations to determine the maximum temperature at the particle surface as a function of optical and thermometric parameters of the problem. The main attention is paid to the case when the thermometric conductivity of the particle is much larger than that of the environment, as it is in the case of metal particles in fluids. We show that in this case at any given finite duration of the laser pulse the maximum temperature rise as a function of the particle size reaches an absolute maximum at a certain finite size of the particle, and we suggest simple approximate analytical expressions for this dependence which covers the entire range of variations of the problem parameters and agree well with direct numerical simulations.

قيم البحث

اقرأ أيضاً

Developing angular trapping methods, which will enable optical tweezers to rotate a micronized bead, is of great importance for the studies of biomacromolecules during a wide range of torque-generation processes. Here we report a novel controlled ang ular trapping method based on composite Janus particles. We used a chemically synthesized Janus particle, which consists of two hemispheres made of polystyrene (PS) and poly(methyl methacrylate) (PMMA) respectively, as a model system to demonstrate this method. Through computational and experimental studies, we demonstrated the feasibility to control the rotation of a Janus particle in a linearly polarized laser trap. Our results showed that the Janus particle aligned its two hemispheres interface parallel to the laser propagation direction as well as the laser polarization direction. In our experiments, the rotational state of the particle can be easily and directly visualized by using a CMOS camera, and does not require complex optical detection system. The rotation of the Janus particle in the laser trap can be fully controlled in real time by controlling the laser polarization direction. Our newly developed angular trapping technique has the great advantage of easy implementation and real time controllability. Considering the easy chemical synthesis of Janus particles and implementation of the angular trapping, this novel method has the potential of becoming a general angular trapping method. We anticipate that this new method will significantly broaden the availability of angular trapping in the biophysics community, and expand the scope of the research that can be enabled by the angular trapping approach.
We investigate the interaction of trains of femtosecond microjoule laser pulses with dielectric materials by means of a multi-scale model. Our theoretical predictions are directly confronted with experimental observations in soda-lime glass. We show that due to the low heat conductivity, a significant fraction of the laser energy can be accumulated in the absorption region. Depending on the pulse repetition rate, the material can be heated to high temperatures even though the single pulse energy is too low to induce a significant material modification. Regions heated above the glass transition temperature in our simulations correspond very well to zones of permanent material modifications observed in the experiments.
Attosecond pulses are fundamental for the investigation of valence and core-electron dynamics on their natural timescale. At present the reproducible generation and characterisation of attosecond waveforms has been demonstrated only through the proce ss of high-order harmonic generation. Several methods for the shaping of attosecond waveforms have been proposed, including metallic filters, multilayer mirrors and manipulation of the driving field. However, none of these approaches allow for the flexible manipulation of the temporal characteristics of the attosecond waveforms, and they suffer from the low conversion efficiency of the high-order harmonic generation process. Free Electron Lasers, on the contrary, deliver femtosecond, extreme ultraviolet and X-ray pulses with energies ranging from tens of $mathrm{mu}$J to a few mJ. Recent experiments have shown that they can generate sub-fs spikes, but with temporal characteristics that change shot-to-shot. Here we show the first demonstration of reproducible generation of high energy ($mathrm{mu}$J level) attosecond waveforms using a seeded Free Electron Laser. We demonstrate amplitude and phase manipulation of the harmonic components of an attosecond pulse train in combination with a novel approach for its temporal reconstruction. The results presented here open the way to perform attosecond time-resolved experiments with Free Electron Lasers.
We reply to S. Coen and T. Sylvestres comment on our paper [Phys. Rev. A 80, 045803 (2009)] and make some additional remarks on our experimental results.
75 - P.N. Terekhin 2021
Understanding the mechanisms and controlling the possibilities of surface nanostructuring is of crucial interest from fundamental and practical perspectives. Here we report a direct experimental observation of laser-induced periodic surface structure s (LIPSS) formed near a predesigned gold step edge following single-pulse femtosecond laser irradiation. A hybrid atomistic-continuum model fully supports experimental observations. We identify two key components of single-pulse LIPSS formation: excitation of surface plasmon polaritons and material reorganization. Our results lay the foundation towards simple and efficient single laser pulse micromachining.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا