ترغب بنشر مسار تعليمي؟ اضغط هنا

We find a novel one-parameter family of integrable quadratic Cremona maps of the plane preserving a pencil of curves of degree 6 and of genus 1. They turn out to serve as Kahan-type discretizations of a novel family of quadratic vector fields possess ing a polynomial integral of degree 6 whose level curves are of genus 1, as well. These vector fields are non-homogeneous generalizations of reduced Nahm systems for magnetic monopoles with icosahedral symmetry, introduced by Hitchin, Manton and Murray. The straightforward Kahan discretization of these novel non-homogeneous systems is non-integrable. However, this drawback is repaired by introducing adjustments of order $O(epsilon^2)$ in the coefficients of the discretization, where $epsilon$ is the stepsize.
We contribute to the algebraic-geometric study of discrete integrable systems generated by planar birational maps: (a) we find geometric description of Manin involutions for elliptic pencils consisting of curves of higher degree, birationally equiv alent to cubic pencils (Halphen pencils of index 1), and (b) we characterize special geometry of base points ensuring that certain compositions of Manin involutions are integrable maps of low degree (quadratic Cremona maps). In particular, we identify some integrable Kahan discretizations as compositions of Manin involutions for elliptic pencils of higher degree.
Kahan discretization is applicable to any system of ordinary differential equations on $mathbb R^n$ with a quadratic vector field, $dot{x}=f(x)=Q(x)+Bx+c$, and produces a birational map $xmapsto widetilde{x}$ according to the formula $(widetilde{x}-x )/epsilon=Q(x,widetilde{x})+B(x+widetilde{x})/2+c$, where $Q(x,widetilde{x})$ is the symmetric bilinear form corresponding to the quadratic form $Q(x)$. When applied to integrable systems, Kahan discretization preserves integrability much more frequently than one would expect a priori, however not always. We show that in some cases where the original recipe fails to preserve integrability, one can adjust coefficients of the Kahan discretization to ensure its integrability.
In the first part of the paper, we classify linear integrable (multi-dimensionally consistent) quad-equations on bipartite isoradial quad-graphs in $mathbb C$, enjoying natural symmetries and the property that the restriction of their solutions to th e black vertices satisfies a Laplace type equation. The classification reduces to solving a functional equation. Under certain restriction, we give a complete solution of the functional equation, which is expressed in terms of elliptic functions. We find two real analytic reductions, corresponding to the cases when the underlying complex torus is of a rectangular type or of a rhombic type. The solution corresponding to the rectangular type was previously found by Boutillier, de Tili`ere and Raschel. Using the multi-dimensional consistency, we construct the discrete exponential function, which serves as a basis of solutions of the quad-equation. In the second part of the paper, we focus on the integrability of discrete linear variational problems. We consider discrete pluri-harmonic functions, corresponding to a discrete 2-form with a quadratic dependence on the fields at black vertices only. In an important particular case, we show that the problem reduces to a two-field generalization of the classical star-triangle map. We prove the integrability of this novel 3D system by showing its multi-dimensional consistency. The Laplacians from the first part come as a special solution of the two-field star-triangle map.
Kahan discretization is applicable to any quadratic vector field and produces a birational map which approximates the shift along the phase flow. For a planar quadratic Hamiltonian vector field with a linear Poisson tensor and with a quadratic Hamilt on function, this map is known to be integrable and to preserve a pencil of conics. In the paper `Three classes of quadratic vector fields for which the Kahan discretization is the root of a generalised Manin transformation by P. van der Kamp et al., it was shown that the Kahan discretization can be represented as a composition of two involutions on the pencil of conics. In the present note, which can be considered as a comment to that paper, we show that this result can be reversed. For a linear form $ell(x,y)$, let $B_1,B_2$ be any two distinct points on the line $ell(x,y)=-c$, and let $B_3,B_4$ be any two distinct points on the line $ell(x,y)=c$. Set $B_0=tfrac{1}{2}(B_1+B_3)$ and $B_5=tfrac{1}{2}(B_2+B_4)$; these points lie on the line $ell(x,y)=0$. Finally, let $B_infty$ be the point at infinity on this line. Let $mathfrak E$ be the pencil of conics with the base points $B_1,B_2,B_3,B_4$. Then the composition of the $B_infty$-switch and of the $B_0$-switch on the pencil $mathfrak E$ is the Kahan discretization of a Hamiltonian vector field $f=ell(x,y)begin{pmatrix}partial H/partial y -partial H/partial x end{pmatrix}$ with a quadratic Hamilton function $H(x,y)$. This birational map $Phi_f:mathbb C P^2dashrightarrowmathbb C P^2$ has three singular points $B_0,B_2,B_4$, while the inverse map $Phi_f^{-1}$ has three singular points $B_1,B_3,B_5$.
Kahan discretization is applicable to any quadratic vector field and produces a birational map which approximates the shift along the phase flow. For a planar quadratic Hamiltonian vector field, this map is known to be integrable and to preserve a pe ncil of cubic curves. Generically, the nine base points of this pencil include three points at infinity (corresponding to the asymptotic directions of cubic curves) and six finite points lying on a conic. We show that the Kahan discretization map can be represented in six different ways as a composition of two Manin involutions, corresponding to an infinite base point and to a finite base point. As a consequence, the finite base points can be ordered so that the resulting hexagon has three pairs of parallel sides which pass through the three base points at infinity. Moreover, this geometric condition on the base points turns out to be characteristic: if it is satisfied, then the cubic curves of the corresponding pencil are invariant under the Kahan discretization of a planar quadratic Hamiltonian vector field.
R. Hirota and K. Kimura discovered integrable discretizations of the Euler and the Lagrange tops, given by birational maps. Their method is a specialization to the integrable context of a general discretization scheme introduced by W. Kahan and appli cable to any vector field with a quadratic dependence on phase variables. We report several novel observations regarding integrability of the Kahan-Hirota-Kimura discretization. For several of the most complicated cases for which integrability is known (Clebsch system, Kirchhoff system, and Lagrange top), - we give nice compact formulas for some of the more complicated integrals of motion and for the density of the invariant measure, and - we establish the existence of higher order Wronskian Hirota-Kimura bases, generating the full set of integrals of motion. While the first set of results admits nice algebraic proofs, the second one relies on computer algebra.
74 - Yuri B. Suris 2018
In this paper, we discuss several concepts of the modern theory of discrete integrable systems, including: - Time discretization based on the notion of Backlund transformation; - Symplectic realizations of multi-Hamiltonian structures; - Interr elations between discrete 1D systems and lattice 2D systems; - Multi-dimensional consistency as integrability of discrete systems; - Interrelations between integrable systems of quad-equations and integrable systems of Laplace type; - Pluri-Lagrangian structure as integrability of discrete variational systems. All these concepts are illustrated by the discrete time Toda lattices and their relativistic analogs.
The main result of this note is a characterization of the Poisson commutativity of Hamilton functions in terms of their principal action functions.
We analyze the relation of the notion of a pluri-Lagrangian system, which recently emerged in the theory of integrable systems, to the classical notion of variational symmetry, due to E. Noether. We treat classical mechanical systems and show that, f or any Lagrangian system with $m$ commuting variational symmetries, one can construct a pluri-Lagrangian 1-form in the $(m+1)$-dimensional time, whose multi-time Euler-Lagrange equations coincide with the original system supplied with $m$ commuting evolutionary flows corresponding to the variational symmetries. We also give a Hamiltonian counterpart of this construction, leading, for any system of commuting Hamiltonian flows, to a pluri-Lagrangian 1-form with coefficients depending on functions in the phase space.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا