ترغب بنشر مسار تعليمي؟ اضغط هنا

We numerically investigate the motion of active artificial microswimmers diffusing in a fuel concentration gradient. We observe that, in the steady state, their probability density accumulates in the low-concentration regions, whereas a tagged swimme r drifts with velocity depending in modulus and orientation on how the concentration gradient affects the self-propulsion mechanism. Under most experimentally accessible conditions, the particle drifts toward the high-concentration regions (pseudo-chemotactic drift). A correct interpretation of experimental data must account for such an anti-Fickian behavior.
86 - Yunyun Li , Nianbei Li , 2015
In contrary to other 1D momentum-conserving lattices such as the Fermi-Pasta-Ulam $beta$ (FPU-$beta$) lattice, the 1D coupled rotator lattice is a notable exception which conserves total momentum while exhibits normal heat conduction behavior. The te mperature behavior of the thermal conductivities of 1D coupled rotator lattice had been studied in previous works trying to reveal the underlying physical mechanism for normal heat conduction. However, two different temperature behaviors of thermal conductivities have been claimed for the same coupled rotator lattice. These different temperature behaviors also intrigue the debate whether there is a phase transition of thermal conductivities as the function of temperature. In this work, we will revisit the temperature dependent thermal conductivities for the 1D coupled rotator lattice. We find that the temperature dependence follows a power law behavior which is different with the previously found temperature behaviors. Our results also support the claim that there is no phase transition for 1D coupled rotator lattice. We also give some discussion about the similarity of diffusion behaviors between the 1D coupled rotator lattice and the single kicked rotator also called the Chirikov standard map.
We investigate the transport diffusivity of artificial microswimmers, a.k.a. Janus particles, moving in a sinusoidal channel in the absence of external biases. Their diffusion constant turns out to be quite sensitive to the self-propulsion mechanism and the geometry of the channel compartments. Our analysis thus suggests how to best control the diffusion of active Brownian motion in confined geometries.
We review recent advances in rectification control of artificial microswimmers, also known as Janus particles, diffusing along narrow, periodically corrugated channels. The swimmer self-propulsion mechanism is modeled so as to incorporate a nonzero t orque (propulsion chirality). We first summarize the effects of chirality on the autonomous current of microswimmers freely diffusing in channels of different geometries. In particular, left-right and upside-down asymmetric channels are shown to exhibit different transport properties. We then report new results on the dependence of the diffusivity of chiral microswimmers on the channel geometry and their own self-propulsion mechanism. The self-propulsion torque turns out to play a key role as a transport control parameter.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا