ترغب بنشر مسار تعليمي؟ اضغط هنا

88 - Yunan Wu , Lan Wang , Haoda Fu 2021
This paper develops new tools to quantify uncertainty in optimal decision making and to gain insight into which variables one should collect information about given the potential cost of measuring a large number of variables. We investigate simultane ous inference to determine if a group of variables is relevant for estimating an optimal decision rule in a high-dimensional semiparametric framework. The unknown link function permits flexible modeling of the interactions between the treatment and the covariates, but leads to nonconvex estimation in high dimension and imposes significant challenges for inference. We first establish that a local restricted strong convexity condition holds with high probability and that any feasible local sparse solution of the estimation problem can achieve the near-oracle estimation error bound. We further rigorously verify that a wild bootstrap procedure based on a debiased version of the local solution can provide asymptotically honest uniform inference for the effect of a group of variables on optimal decision making. The advantage of honest inference is that it does not require the initial estimator to achieve perfect model selection and does not require the zero and nonzero effects to be well-separated. We also propose an efficient algorithm for estimation. Our simulations suggest satisfactory performance. An example from a diabetes study illustrates the real application.
142 - Yunan Wu , Lan Wang 2019
We propose a new procedure for inference on optimal treatment regimes in the model-free setting, which does not require to specify an outcome regression model. Existing model-free estimators for optimal treatment regimes are usually not suitable for the purpose of inference, because they either have nonstandard asymptotic distributions or do not necessarily guarantee consistent estimation of the parameter indexing the Bayes rule due to the use of surrogate loss. We first study a smoothed robust estimator that directly targets the parameter corresponding to the Bayes decision rule for optimal treatment regimes estimation. This estimator is shown to have an asymptotic normal distribution. Furthermore, we verify that a resampling procedure provides asymptotically accurate inference for both the parameter indexing the optimal treatment regime and the optimal value function. A new algorithm is developed to calculate the proposed estimator with substantially improved speed and stability. Numerical results demonstrate the satisfactory performance of the new methods.
98 - Yunan Wu , Lan Wang 2019
Penalized (or regularized) regression, as represented by Lasso and its variants, has become a standard technique for analyzing high-dimensional data when the number of variables substantially exceeds the sample size. The performance of penalized regr ession relies crucially on the choice of the tuning parameter, which determines the amount of regularization and hence the sparsity level of the fitted model. The optimal choice of tuning parameter depends on both the structure of the design matrix and the unknown random error distribution (variance, tail behavior, etc). This article reviews the current literature of tuning parameter selection for high-dimensional regression from both theoretical and practical perspectives. We discuss various strategies that choose the tuning parameter to achieve prediction accuracy or support recovery. We also review several recently proposed methods for tuning-free high-dimensional regression.
In this paper, we want to show the Restricted Wishart distribution is equivalent to the LKJ distribution, which is one way to specify a uniform distribution from the space of positive definite correlation matrices. Based on this theorem, we propose a new method to generate random correlation matrices from the LKJ distribution. This new method is faster than the original onion method for generating random matrices, especially in the low dimension ($T<120$) situation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا