ترغب بنشر مسار تعليمي؟ اضغط هنا

Model-Assisted Uniformly Honest Inference for Optimal Treatment Regimes in High Dimension

89   0   0.0 ( 0 )
 نشر من قبل Yunan Wu
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper develops new tools to quantify uncertainty in optimal decision making and to gain insight into which variables one should collect information about given the potential cost of measuring a large number of variables. We investigate simultaneous inference to determine if a group of variables is relevant for estimating an optimal decision rule in a high-dimensional semiparametric framework. The unknown link function permits flexible modeling of the interactions between the treatment and the covariates, but leads to nonconvex estimation in high dimension and imposes significant challenges for inference. We first establish that a local restricted strong convexity condition holds with high probability and that any feasible local sparse solution of the estimation problem can achieve the near-oracle estimation error bound. We further rigorously verify that a wild bootstrap procedure based on a debiased version of the local solution can provide asymptotically honest uniform inference for the effect of a group of variables on optimal decision making. The advantage of honest inference is that it does not require the initial estimator to achieve perfect model selection and does not require the zero and nonzero effects to be well-separated. We also propose an efficient algorithm for estimation. Our simulations suggest satisfactory performance. An example from a diabetes study illustrates the real application.



قيم البحث

اقرأ أيضاً

142 - Yunan Wu , Lan Wang 2019
We propose a new procedure for inference on optimal treatment regimes in the model-free setting, which does not require to specify an outcome regression model. Existing model-free estimators for optimal treatment regimes are usually not suitable for the purpose of inference, because they either have nonstandard asymptotic distributions or do not necessarily guarantee consistent estimation of the parameter indexing the Bayes rule due to the use of surrogate loss. We first study a smoothed robust estimator that directly targets the parameter corresponding to the Bayes decision rule for optimal treatment regimes estimation. This estimator is shown to have an asymptotic normal distribution. Furthermore, we verify that a resampling procedure provides asymptotically accurate inference for both the parameter indexing the optimal treatment regime and the optimal value function. A new algorithm is developed to calculate the proposed estimator with substantially improved speed and stability. Numerical results demonstrate the satisfactory performance of the new methods.
131 - Peng Wu , Zhiqiang Tan , Wenjie Hu 2021
Covariate-specific treatment effects (CSTEs) represent heterogeneous treatment effects across subpopulations defined by certain selected covariates. In this article, we consider marginal structural models where CSTEs are linearly represented using a set of basis functions of the selected covariates. We develop a new approach in high-dimensional settings to obtain not only doubly robust point estimators of CSTEs, but also model-assisted confidence intervals, which are valid when a propensity score model is correctly specified but an outcome regression model may be misspecified. With a linear outcome model and subpopulations defined by discrete covariates, both point estimators and confidence intervals are doubly robust for CSTEs. In contrast, confidence intervals from existing high-dimensional methods are valid only when both the propensity score and outcome models are correctly specified. We establish asymptotic properties of the proposed point estimators and the associated confidence intervals. We present simulation studies and empirical applications which demonstrate the advantages of the proposed method compared with competing ones.
81 - Baoluo Sun , Zhiqiang Tan 2020
Consider the problem of estimating the local average treatment effect with an instrument variable, where the instrument unconfoundedness holds after adjusting for a set of measured covariates. Several unknown functions of the covariates need to be es timated through regression models, such as instrument propensity score and treatment and outcome regression models. We develop a computationally tractable method in high-dimensional settings where the numbers of regression terms are close to or larger than the sample size. Our method exploits regularized calibrated estimation, which involves Lasso penalties but carefully chosen loss functions for estimating coefficient vectors in these regression models, and then employs a doubly robust estimator for the treatment parameter through augmented inverse probability weighting. We provide rigorous theoretical analysis to show that the resulting Wald confidence intervals are valid for the treatment parameter under suitable sparsity conditions if the instrument propensity score model is correctly specified, but the treatment and outcome regression models may be misspecified. For existing high-dimensional methods, valid confidence intervals are obtained for the treatment parameter if all three models are correctly specified. We evaluate the proposed methods via extensive simulation studies and an empirical application to estimate the returns to education.
In clinical practice, physicians make a series of treatment decisions over the course of a patients disease based on his/her baseline and evolving characteristics. A dynamic treatment regime is a set of sequential decision rules that operationalizes this process. Each rule corresponds to a decision point and dictates the next treatment action based on the accrued information. Using existing data, a key goal is estimating the optimal regime, that, if followed by the patient population, would yield the most favorable outcome on average. Q- and A-learning are two main approaches for this purpose. We provide a detailed account of these methods, study their performance, and illustrate them using data from a depression study.
There is a fast-growing literature on estimating optimal treatment regimes based on randomized trials or observational studies under a key identifying condition of no unmeasured confounding. Because confounding by unmeasured factors cannot generally be ruled out with certainty in observational studies or randomized trials subject to noncompliance, we propose a general instrumental variable approach to learning optimal treatment regimes under endogeneity. Specifically, we establish identification of both value function $E[Y_{mathcal{D}(L)}]$ for a given regime $mathcal{D}$ and optimal regimes $text{argmax}_{mathcal{D}} E[Y_{mathcal{D}(L)}]$ with the aid of a binary instrumental variable, when no unmeasured confounding fails to hold. We also construct novel multiply robust classification-based estimators. Furthermore, we propose to identify and estimate optimal treatment regimes among those who would comply to the assigned treatment under a standard monotonicity assumption. In this latter case, we establish the somewhat surprising result that complier optimal regimes can be consistently estimated without directly collecting compliance information and therefore without the complier average treatment effect itself being identified. Our approach is illustrated via extensive simulation studies and a data application on the effect of child rearing on labor participation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا