ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent improvements in materials growth and fabrication techniques may finally allow for superconducting semiconductors to realize their potential. Here we build on a recent proposal to construct superconducting devices such as wires, Josephson junct ions, and qubits inside and out-of single crystal silicon or germanium. Using atomistic fabrication techniques such as STM hydrogen lithography, heavily-doped superconducting regions within a single crystal could be constructed. We describe the characteristic parameters of basic superconducting elements---a 1D wire and a tunneling Josephson junction---and estimate the values for boron-doped silicon. The epitaxial, single-crystal nature of these devices, along with the extreme flexibility in device design down to the single-atom scale, may enable lower-noise or new types of devices and physics. We consider applications for such super-silicon devices, showing that the state-of-the-art transmon qubit and the sought-after phase-slip qubit can both be realized. The latter qubit leverages the natural high kinetic inductance of these materials. Building on this, we explore how kinetic inductance based particle detectors (e.g., photon or phonon) could be realized with potential application in astronomy or nanomechanics. We discuss super-semi devices (such as in silicon, germanium, or diamond) which would not require atomistic fabrication approaches and could be realized today.
Superconducting circuits are exceptionally flexible, enabling many different devices from sensors to quantum computers. Separately, epitaxial semiconductor devices such as spin qubits in silicon offer more limited device variation but extraordinary q uantum properties for a solid-state system. It might be possible to merge the two approaches, making single-crystal superconducting devices out of a semiconductor by utilizing the latest atomistic fabrication techniques. Here we propose superconducting devices made from precision hole-doped regions within a silicon (or germanium) single crystal. We analyze the properties of this superconducting semiconductor and show that practical superconducting wires, Josephson tunnel junctions or weak links, superconducting quantum interference devices (SQUIDs), and qubits are feasible. This work motivates the pursuit of bottom-up superconductivity for improved or fundamentally different technology and physics.
Any single-qubit unitary operation or quantum gate can be considered a rotation. Typical experimental implementations of single-qubit gates involve two or three fixed rotation axes, and up to three rotation steps. Here we show that, if the rotation a xes can be tuned arbitrarily in a fixed plane, then two rotation steps are sufficient for implementing a single-qubit gate, and one rotation step is sufficient for implementing a state transformation. The results are relevant for exchange-only logical qubits encoded in three-spin blocks, which are important for universal quantum computation in decoherence free subsystems and subspaces.
Quantum phase transitions (QPTs) in qubit systems are known to produce singularities in the entanglement, which could in turn be used to probe the QPT. Current proposals to measure the entanglement are challenging however, because of their nonlocal n ature. Here we show that a double quantum dot coupled locally to a spin chain provides an alternative and efficient probe of QPTs. We propose an experiment to observe a QPT in a triple dot, based on the well-known singlet projection technique.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا