ترغب بنشر مسار تعليمي؟ اضغط هنا

16 - Yeyun Zou , Qiyu Xie 2021
Visual question answering (VQA) is a task that combines both the techniques of computer vision and natural language processing. It requires models to answer a text-based question according to the information contained in a visual. In recent years, th e research field of VQA has been expanded. Research that focuses on the VQA, examining the reasoning ability and VQA on scientific diagrams, has also been explored more. Meanwhile, more multimodal feature fusion mechanisms have been proposed. This paper will review and analyze existing datasets, metrics, and models proposed for the VQA task.
Doping is an effective way to modify the electronic property of two-dimensional (2D) materials and endow them with new functionalities. However, wide-range control of the substitutional doping concentration with large scale uniformity remains challen ging in 2D materials. Here we report in-situ chemical vapor deposition growth of vanadium (V) doped monolayer molybdenum disulfide (MoS2) with widely tunable doping concentrations ranging from 0.3 to 13.1 at%. The key to regulate the doping concentration lies in the use of appropriate V precursors with different doping abilities, which also generate a large-scale uniform doping effect. Artificial synaptic transistors were fabricated by using the heavily doped MoS2 as the channel material for the first time. Synaptic potentiation, depression and repetitive learning processes are mimicked by the gate-tunable channel conductance change in such transistors with abundant V atoms to trap/detrap electrons. This work shows a feasible method to dope monolayer 2D semiconductors and demonstrates their use in artificial synaptic transistors.
69 - Qiuyun Zou , Haochuan Zhang , 2021
The reconstruction of sparse signal is an active area of research. Different from a typical i.i.d. assumption, this paper considers a non-independent prior of group structure. For this more practical setup, we propose EM-aided HyGEC, a new algorithm to address the stability issue and the hyper-parameter issue facing the other algorithms. The instability problem results from the ill condition of the transform matrix, while the unavailability of the hyper-parameters is a ground truth that their values are not known beforehand. The proposed algorithm is built on the paradigm of HyGAMP (proposed by Rangan et al.) but we replace its inner engine, the GAMP, by a matrix-insensitive alternative, the GEC, so that the first issue is solved. For the second issue, we take expectation-maximization as an outer loop, and together with the inner engine HyGEC, we learn the value of the hyper-parameters. Effectiveness of the proposed algorithm is also verified by means of numerical simulations.
Animals ranging from rats to humans can demonstrate cognitive map capabilities. We evolved weights in a biologically plausible recurrent neural network (RNN) using an evolutionary algorithm to replicate the behavior and neural activity observed in ra ts during a spatial and working memory task in a triple T-maze. The rat was simulated in the Webots robot simulator and used vision, distance and accelerometer sensors to navigate a virtual maze. After evolving weights from sensory inputs to the RNN, within the RNN, and from the RNN to the robots motors, the Webots agent successfully navigated the space to reach all four reward arms with minimal repeats before time-out. Our current findings suggest that it is the RNN dynamics that are key to performance, and that performance is not dependent on any one sensory type, which suggests that neurons in the RNN are performing mixed selectivity and conjunctive coding. Moreover, the RNN activity resembles spatial information and trajectory-dependent coding observed in the hippocampus. Collectively, the evolved RNN exhibits navigation skills, spatial memory, and working memory. Our method demonstrates how the dynamic activity in evolved RNNs can capture interesting and complex cognitive behavior and may be used to create RNN controllers for robotic applications.
This is Part II of a two-part work on the estimation for a multi-layer generalized linear model (ML-GLM) in large system limits. In Part I, we had analyzed the asymptotic performance of an exact MMSE estimator, and obtained a set of coupled equations that could characterize its MSE performance. To work around the implementation difficulty of the exact estimator, this paper continues to propose an approximate solution, ML-GAMP, which could be derived by blending a moment-matching projection into the Gaussian approximated loopy belief propagation. The ML-GAMP estimator is then shown to enjoy a great simplicity in its implementation, where its per-iteration complexity is as low as GAMP. Further analysis on its asymptotic performance also reveals that, in large system limits, its dynamical MSE behavior is fully characterized by a set of simple one-dimensional iterating equations, termed state evolution (SE). Interestingly, this SE of ML-GAMP share exactly the same fixed points with an exact MMSE estimator whose fixed points were obtained in Part I via a replica analysis. Given the Bayes-optimality of the exact implementation, this proposed estimator (if converged) is optimal in the MSE sense.
This two-part work considers the minimum means square error (MMSE) estimation problem for a high dimensional multi-layer generalized linear model (ML-GLM), which resembles a feed-forward fully connected deep learning network in that each of its layer mixes up the random input with a known weighting matrix and activates the results via non-linear functions, except that the activation here is stochastic and following some random distribution. Part I of the work focuses on the exact MMSE estimator, whose implementation is long known infeasible. For this exact estimator, an asymptotic analysis on the performance is carried out using a new replica method that is refined from certain aspects. A decoupling principle is then established, suggesting that, in terms of joint input-and-estimate distribution, the original estimation problem of multiple-input multiple-output is indeed identical to a simple single-input single-output one subjected to additive white Gaussian noise (AWGN) only. The variance of the AWGN is further shown to be determined by some coupled equations, whose dependency on the weighting and activation is given explicitly and analytically. Comparing to existing results, this paper is the first to offer a decoupling principle for the ML-GLM estimation problem. To further address the implementation issue of an exact solution, Part II proposes an approximate estimator, ML-GAMP, whose per-iteration complexity is as low as GAMP, while its asymptotic MSE (if converged) is as optimal as the exact MMSE estimator.
143 - Qiuyun Zou , Haochuan Zhang , 2020
In this paper, we extend the bilinear generalized approximate message passing (BiG-AMP) approach, originally proposed for high-dimensional generalized bilinear regression, to the multi-layer case for the handling of cascaded problem such as matrix-fa ctorization problem arising in relay communication among others. Assuming statistically independent matrix entries with known priors, the new algorithm called ML-BiGAMP could approximate the general sum-product loopy belief propagation (LBP) in the high-dimensional limit enjoying a substantial reduction in computational complexity. We demonstrate that, in large system limit, the asymptotic MSE performance of ML-BiGAMP could be fully characterized via a set of simple one-dimensional equations termed state evolution (SE). We establish that the asymptotic MSE predicted by ML-BiGAMP SE matches perfectly the exact MMSE predicted by the replica method, which is well known to be Bayes-optimal but infeasible in practice. This consistency indicates that the ML-BiGAMP may still retain the same Bayes-optimal performance as the MMSE estimator in high-dimensional applications, although ML-BiGAMPs computational burden is far lower. As an illustrative example of the general ML-BiGAMP, we provide a detector design that could estimate the channel fading and the data symbols jointly with high precision for the two-hop amplify-and-forward relay communication systems.
170 - Haochuan Zhang , Qiuyun Zou 2020
For massive MIMO AF relays, symbol detection becomes a practical issue when the number of antennas is not large enough, since linear methods are non-optimal and optimal methods are exponentially complex. This paper proposes a new detection algorithm that offers Bayesian-optimal MSE at the cost of $O(n^3)$ complexity per iteration. The algorithm is in essence a hybrid of two methods recently developed for deep learning, with particular optimization for relay. As a hybrid, it inherits from the two a state evolution formulism, where the asymptotic MSE can be precisely predicted through a scalar equivalent model. The algorithm also degenerates easily to many results well-known when single-hop considered.
Robots and self-driving vehicles face a number of challenges when navigating through real environments. Successful navigation in dynamic environments requires prioritizing subtasks and monitoring resources. Animals are under similar constraints. It h as been shown that the neuromodulator serotonin regulates impulsiveness and patience in animals. In the present paper, we take inspiration from the serotonergic system and apply it to the task of robot navigation. In a set of outdoor experiments, we show how changing the level of patience can affect the amount of time the robot will spend searching for a desired location. To navigate GPS compromised environments, we introduce a deep reinforcement learning paradigm in which the robot learns to follow sidewalks. This may further regulate a tradeoff between a smooth long route and a rough shorter route. Using patience as a parameter may be beneficial for autonomous systems under time pressure.
Catastrophic forgetting/interference is a critical problem for lifelong learning machines, which impedes the agents from maintaining their previously learned knowledge while learning new tasks. Neural networks, in particular, suffer plenty from the c atastrophic forgetting phenomenon. Recently there has been several efforts towards overcoming catastrophic forgetting in neural networks. Here, we propose a biologically inspired method toward overcoming catastrophic forgetting. Specifically, we define an attention-based selective plasticity of synapses based on the cholinergic neuromodulatory system in the brain. We define synaptic importance parameters in addition to synaptic weights and then use Hebbian learning in parallel with backpropagation algorithm to learn synaptic importances in an online and seamless manner. We test our proposed method on benchmark tasks including the Permuted MNIST and the Split MNIST problems and show competitive performance compared to the state-of-the-art methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا